IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v131y2014icp267-278.html

Forecasting household consumer electricity load profiles with a combined physical and behavioral approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kazmi, Hussain & Munné-Collado, Íngrid & Mehmood, Fahad & Syed, Tahir Abbas & Driesen, Johan, 2021. "Towards data-driven energy communities: A review of open-source datasets, models and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  2. Vogl, Jonathan & Kleinebrahm, Max & Raab, Moritz & McKenna, Russell & Fichtner, Wolf, 2025. "A review of challenges and opportunities in occupant modeling for future residential energy demand," Working Paper Series in Production and Energy 76, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  3. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  4. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
  5. Nick MacMackin, & Miller, Lindsay & Carriveau, Rupp, 2019. "Modeling and disaggregating hourly effects of weather on sectoral electricity demand," Energy, Elsevier, vol. 188(C).
  6. Meireles, I. & Sousa, V. & Bleys, B. & Poncelet, B., 2022. "Domestic hot water consumption pattern: Relation with total water consumption and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  7. Sandels, C. & Brodén, D. & Widén, J. & Nordström, L. & Andersson, E., 2016. "Modeling office building consumer load with a combined physical and behavioral approach: Simulation and validation," Applied Energy, Elsevier, vol. 162(C), pages 472-485.
  8. Pinrolinvic D. K. Manembu & Angreine Kewo & Rasmus Bramstoft & Per Sieverts Nielsen, 2023. "A Systematicity Review on Residential Electricity Load-Shifting at the Appliance Level," Energies, MDPI, vol. 16(23), pages 1-22, November.
  9. Angreine Kewo & Pinrolinvic D. K. Manembu & Per Sieverts Nielsen, 2023. "A Rigorous Standalone Literature Review of Residential Electricity Load Profiles," Energies, MDPI, vol. 16(10), pages 1-27, May.
  10. Kipping, A. & Trømborg, E., 2015. "Hourly electricity consumption in Norwegian households – Assessing the impacts of different heating systems," Energy, Elsevier, vol. 93(P1), pages 655-671.
  11. Kipping, A. & Trømborg, E., 2017. "Modeling hourly consumption of electricity and district heat in non-residential buildings," Energy, Elsevier, vol. 123(C), pages 473-486.
  12. Ildar Daminov & Rémy Rigo-Mariani & Raphael Caire & Anton Prokhorov & Marie-Cécile Alvarez-Hérault, 2021. "Demand Response Coupled with Dynamic Thermal Rating for Increased Transformer Reserve and Lifetime," Energies, MDPI, vol. 14(5), pages 1-27, March.
  13. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
  14. Marwan, Marwan, 2020. "The impact of probability of electricity price spike and outside temperature to define total expected cost for air conditioning," Energy, Elsevier, vol. 195(C).
  15. Wang, Yao & Lin, Boqiang & Li, Minyang, 2021. "Is household electricity saving a virtuous circle? A case study of the first-tier cities in China," Applied Energy, Elsevier, vol. 285(C).
  16. Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.
  17. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
  18. Moral-Carcedo, Julián & Pérez-García, Julián, 2015. "Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain," Applied Energy, Elsevier, vol. 142(C), pages 407-425.
  19. Di Piazza, A. & Di Piazza, M.C. & La Tona, G. & Luna, M., 2021. "An artificial neural network-based forecasting model of energy-related time series for electrical grid management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 294-305.
  20. Lin, Haiyang & Wang, Qinxing & Wang, Yu & Liu, Yiling & Sun, Qie & Wennersten, Ronald, 2017. "The energy-saving potential of an office under different pricing mechanisms – Application of an agent-based model," Applied Energy, Elsevier, vol. 202(C), pages 248-258.
  21. Ntumba Marc-Alain Mutombo & Bubele Papy Numbi, 2022. "Development of a Linear Regression Model Based on the Most Influential Predictors for a Research Office Cooling Load," Energies, MDPI, vol. 15(14), pages 1-20, July.
  22. Hall, Rebecca & Kenway, Steven & O'Brien, Katherine & Memon, Fayyaz, 2025. "Quantification of residential water-related energy needs cohesion, validation and global representation to unlock efficiency gains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  23. Hegazy Rezk & Rania M. Ghoniem & Seydali Ferahtia & Ahmed Fathy & Mohamed M. Ghoniem & Reem Alkanhel, 2022. "A Comparison of Different Renewable-Based DC Microgrid Energy Management Strategies for Commercial Buildings Applications," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
  24. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
  25. Linas Gelažanskas & Kelum A. A. Gamage, 2015. "Forecasting Hot Water Consumption in Residential Houses," Energies, MDPI, vol. 8(11), pages 1-16, November.
  26. Zhou, Xin & Tian, Shuai & An, Jingjing & Yan, Da & Zhang, Lun & Yang, Junyan, 2022. "Modeling occupant behavior’s influence on the energy efficiency of solar domestic hot water systems," Applied Energy, Elsevier, vol. 309(C).
  27. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
  28. Knobel, Alexander & Chokaev, Bekhan, 2014. "Possible Economic Outcomes of a Trade Agreement with the European Union," EconStor Preprints 121853, ZBW - Leibniz Information Centre for Economics.
  29. Gallo Cassarino, Tiziano & Sharp, Ed & Barrett, Mark, 2018. "The impact of social and weather drivers on the historical electricity demand in Europe," Applied Energy, Elsevier, vol. 229(C), pages 176-185.
  30. David Macii & Daniele Fontanelli & Grazia Barchi, 2020. "A Distribution System State Estimator Based on an Extended Kalman Filter Enhanced with a Prior Evaluation of Power Injections at Unmonitored Buses," Energies, MDPI, vol. 13(22), pages 1-25, November.
  31. Andersen, Frits Møller & Baldini, Mattia & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2017. "Households’ hourly electricity consumption and peak demand in Denmark," Applied Energy, Elsevier, vol. 208(C), pages 607-619.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.