IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/11015.html
   My bibliography  Save this paper

Clustering life trajectories: A new divisive hierarchical clustering algorithm for discrete-valued discrete time series

Author

Listed:
  • Dlugosz, Stephan

Abstract

A new algorithm for clustering life course trajectories is presented and tested with large register data. Life courses are represented as sequences on a monthly timescale for the working-life with an age span from 16-65. A meaningful clustering result for this kind of data provides interesting subgroups with similar life course trajectories. The high sampling rate allows precise discrimination of the different subgroups, but it produces a lot of highly correlated data for phases with low variability. The main challenge is to select the variables (points in time) that carry most of the relevant information. The new algorithm deals with this problem by simultaneously clustering and identifying critical junctures for each of the relevant subgroups. The developed divisive algorithm is able to handle large amounts of data with multiple dimensions within reasonable time. This is demonstrated on data from the Federal German pension insurance.

Suggested Citation

  • Dlugosz, Stephan, 2011. "Clustering life trajectories: A new divisive hierarchical clustering algorithm for discrete-valued discrete time series," ZEW Discussion Papers 11-015, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
  • Handle: RePEc:zbw:zewdip:11015
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/44458/1/654047626.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Raffaella Piccarreta & Francesco C. Billari, 2007. "Clustering work and family trajectories by using a divisive algorithm," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1061-1078.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Clustering; measures of association; discrete data; time series;

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • J00 - Labor and Demographic Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:11015. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/zemande.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.