IDEAS home Printed from https://ideas.repec.org/p/zbw/upadbr/b3819.html
   My bibliography  Save this paper

Practical aspects of using quadratic moment conditions in linear dynamic panel data models

Author

Listed:
  • Pua, Andrew Adrian Yu
  • Fritsch, Markus
  • Schnurbus, Joachim

Abstract

We study the estimation of the lag parameter of linear dynamic panel data models with first order dynamics based on the quadratic Ahn and Schmidt (1995) moment conditions. Our contribution is twofold: First, we show that extending the standard assumptions by mean stationarity and time series homoscedasticity and employing these assumptions in estimation restores standard asymptotics and mitigates the non-standard distributions found in the literature. Second, we consider an IV estimator based on the quadratic moment conditions that consistently identifies the true population parameter under standard assumptions. Standard asymptotics hold for the estimator when the cross section dimension is large and the time series dimension is finite. We also suggest a data-driven approach to obtain standard errors and confidence intervals that preserves the time series dependence structure in the data.

Suggested Citation

  • Pua, Andrew Adrian Yu & Fritsch, Markus & Schnurbus, Joachim, 2019. "Practical aspects of using quadratic moment conditions in linear dynamic panel data models," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-38-19, University of Passau, Faculty of Business and Economics.
  • Handle: RePEc:zbw:upadbr:b3819
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/204583/1/167818893X.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    2. Sebastian Kripfganz, 2019. "Generalized method of moments estimation of linear dynamic panel-data models," London Stata Conference 2019 17, Stata Users Group.
    3. Jan Kiviet & Milan Pleus & Rutger Poldermans, 2017. "Accuracy and Efficiency of Various GMM Inference Techniques in Dynamic Micro Panel Data Models," Econometrics, MDPI, vol. 5(1), pages 1-54, March.
    4. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fritsch, Markus, 2019. "On GMM estimation of linear dynamic panel data models," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-36-19, University of Passau, Faculty of Business and Economics.
    2. Fritsch, Markus & Pua, Andrew Adrian Yu & Schnurbus, Joachim, 2019. "Pdynmc - An R-package for estimating linear dynamic panel data models based on linear and nonlinear moment conditions," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-39-19, University of Passau, Faculty of Business and Economics.
    3. Pua, Andrew Adrian Yu & Fritsch, Markus & Schnurbus, Joachim, 2019. "Large sample properties of an IV estimator based on the Ahn and Schmidt moment conditions," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-37-19, University of Passau, Faculty of Business and Economics.
    4. Tahir Andrabi & Jishnu Das & Asim Ijaz Khwaja & Tristan Zajonc, 2011. "Do Value-Added Estimates Add Value? Accounting for Learning Dynamics," American Economic Journal: Applied Economics, American Economic Association, vol. 3(3), pages 29-54, July.
    5. Samargandi, Nahla & Fidrmuc, Jan & Ghosh, Sugata, 2015. "Is the Relationship Between Financial Development and Economic Growth Monotonic? Evidence from a Sample of Middle-Income Countries," World Development, Elsevier, vol. 68(C), pages 66-81.
    6. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    7. Dustmann, Christian & Mestres, Josep, 2010. "Remittances and temporary migration," Journal of Development Economics, Elsevier, vol. 92(1), pages 62-70, May.
    8. Kentaro Akashi & Naoto Kunitomo, 2015. "The limited information maximum likelihood approach to dynamic panel structural equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 39-73, February.
    9. José María ARRANZ & Carlos GARCÍA SERRANO & Virginia HERNANZ, 2013. "Active labour market policies in Spain: A macroeconomic evaluation," International Labour Review, International Labour Organization, vol. 152(2), pages 327-348, June.
    10. Manthos D. Delis & K. Christos Staikouras & Panagiotis T. Varlagas, 2008. "On the Measurement of Market Power in the Banking Industry," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(7‐8), pages 1023-1047, September.
    11. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    12. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    13. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    14. Emilia Del Bono & Marco Francesconi & Yvonne Kelly & Amanda Sacker, 2016. "Early Maternal Time Investment and Early Child Outcomes," Economic Journal, Royal Economic Society, vol. 126(596), pages 96-135, October.
    15. Montes, Gabriel Caldas & da Cunha Lima, Luiza Leitão, 2018. "Effects of fiscal transparency on inflation and inflation expectations: Empirical evidence from developed and developing countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 26-37.
    16. Gabriel Caldas Montes & Paulo Henrique Luna, 2021. "Fiscal transparency, legal system and perception of the control on corruption: empirical evidence from panel data," Empirical Economics, Springer, vol. 60(4), pages 2005-2037, April.
    17. Ryan R. Brady, 2011. "Measuring the diffusion of housing prices across space and over time," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 213-231, March.
    18. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 987-1020.
    19. Celikay, Ferdi, 2020. "Dimensions of tax burden: a review on OECD countries," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 25(49), pages 27-43.
    20. de Mendonça, Helder Ferreira & Tiberto, Bruno Pires, 2017. "Effect of credibility and exchange rate pass-through on inflation: An assessment for developing countries," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 196-244.

    More about this item

    Keywords

    panel data; linear dynamic model; quadratic moment conditions; root selection; standard asymptotics; inference;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:upadbr:b3819. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/fwpasde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwpasde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.