IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwbox/201714.html
   My bibliography  Save this paper

Normaler Abschwung oder schwere Rezession? Ein neues Modell für die Prognose der Konjunkturphasen in Deutschland

Author

Listed:
  • Carstensen, Kai
  • Wolters, Maik H.

Abstract

Die Güte makroökonomischer Prognosen hängt vom Konjunkturzyklus ab. Jannsen und Dovern (2017a) analysieren für 19 Länder eine Vielzahl von Prognosen für das Bruttoinlandsprodukt und zeigen, dass diese für Aufschwungphasen im Mittel zutreffend, für Rezessionen hingegen systematisch zu positiv sind. In den Veröffentlichungen institutioneller Prognostiker lassen sich tatsächlich häufig Risikoansprachen oder gesonderte Rezessionsszenarien finden, viel seltener jedoch genau datierte Rezessionen als Teil der Basisprognose. Offenbar tun sich Ökonomen schwer damit, Zeitpunkt und Ausmaß einer Rezession vorherzusagen, selbst wenn sie mit einer konjunkturellen Schwächephase rechnen.

Suggested Citation

  • Carstensen, Kai & Wolters, Maik H., 2017. "Normaler Abschwung oder schwere Rezession? Ein neues Modell für die Prognose der Konjunkturphasen in Deutschland," Kiel Insight 2017.14, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwbox:201714
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/201151/1/ifw-box-2017-14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    2. Boss, Alfred & Dovern, Jonas & Meier, Carsten-Patrick & Scheide, Joachim, 2008. "Deutsche Konjunktur: leichte Rezession absehbar," Open Access Publications from Kiel Institute for the World Economy 28638, Kiel Institute for the World Economy (IfW Kiel).
    3. Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
    4. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ademmer, Martin & Boysen-Hogrefe, Jens & Fiedler, Salomon & Groll, Dominik & Hauber, Philipp & Jannsen, Nils & Kooths, Stefan & Potjagailo, Galina & Wolters, Maik H., 2018. "Deutsche Konjunktur im Sommer 2018 - Deutsche Wirtschaft: Luftloch im konjunkturellen Höhenflug [German Economy Summer 2018 - German economy: Temporary slowdown, boom not over yet]," Kieler Konjunkturberichte 44, Kiel Institute for the World Economy (IfW Kiel).
    2. Jannsen, Nils, 2018. "Prognosen des IfW und tatsächliche Entwicklung 2017," Kiel Insight 2018.2, Kiel Institute for the World Economy (IfW Kiel).
    3. Hauber, Philipp & Jannsen, Nils & Wolters, Maik H., 2018. "Schwacher Jahresauftakt 2018: Delle oder Beginn eines Abschwungs?," Kiel Insight 2018.10, Kiel Institute for the World Economy (IfW Kiel).
    4. Ademmer, Martin & Boysen-Hogrefe, Jens & Fiedler, Salomon & Groll, Dominik & Hauber, Philipp & Jannsen, Nils & Kooths, Stefan & Potjagailo, Galina, 2018. "Deutsche Konjunktur im Frühjahr 2018 - Deutsche Wirtschaft näher am Limit [German Economy Spring 2018 - German economy closer to its limit]," Kieler Konjunkturberichte 41, Kiel Institute for the World Economy (IfW Kiel).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ademmer, Martin & Boysen-Hogrefe, Jens & Fiedler, Salomon & Groll, Dominik & Jannsen, Nils & Kooths, Stefan & Potjagailo, Galina & Wolters, Maik H., 2017. "Deutsche Konjunktur im Herbst 2017 - Deutsche Wirtschaft nähert sich der Hochkonjunktur [German Economy Autumn 2017 - German economy approaches boom period]," Kieler Konjunkturberichte 35, Kiel Institute for the World Economy (IfW Kiel).
    2. Ademmer, Martin & Boysen-Hogrefe, Jens & Fiedler, Salomon & Groll, Dominik & Hauber, Philipp & Jannsen, Nils & Kooths, Stefan & Potjagailo, Galina, 2018. "Deutsche Konjunktur im Frühjahr 2018 - Deutsche Wirtschaft näher am Limit [German Economy Spring 2018 - German economy closer to its limit]," Kieler Konjunkturberichte 41, Kiel Institute for the World Economy (IfW Kiel).
    3. Heinrich, Markus, 2020. "Does the Current State of the Business Cycle matter for Real-Time Forecasting? A Mixed-Frequency Threshold VAR approach," EconStor Preprints 219312, ZBW - Leibniz Information Centre for Economics.
    4. Jannsen, Nils, 2018. "Prognosen des IfW und tatsächliche Entwicklung 2017," Kiel Insight 2018.2, Kiel Institute for the World Economy (IfW Kiel).
    5. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    6. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
    7. Born, Benjamin & Enders, Zeno & Menkhoff, Manuel & Müller, Gernot & Niemann, Knut, 2022. "Firm Expectations and News: Micro v Macro," CEPR Discussion Papers 17768, C.E.P.R. Discussion Papers.
    8. Agnieszka Gehringer & Thomas Mayer, 2021. "Measuring the Business Cycle Chronology with a Novel Business Cycle Indicator for Germany," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(1), pages 71-89, April.
    9. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    10. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    11. Kai Carstensen & Magnus Reif & Maik Wolters, 2019. "Rezessionsrisiko der deutschen Wirtschaft deutlich erhöht," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(05), pages 28-31, March.
    12. Robert Lehmann & Magnus Reif, 2021. "Predicting the German Economy: Headline Survey Indices Under Test," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 215-232, November.
    13. Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021. "Forecasting imports with information from abroad," Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
    14. Christian Grimme & Robert Lehmann & Marvin Nöller, 2018. "Das ifo Importklima – ein erster Frühindikator für die Prognose der deutschen Importe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(12), pages 27-32, June.
    15. Magnus Reif, 2022. "Time‐Varying Dynamics of the German Business Cycle: A Comprehensive Investigation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(1), pages 80-102, February.
    16. Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    17. Sarfraz Hussain & Mohammad Enamul Hoque & Perengki Susanto & Waqas Ahmad Watto & Samina Haque & Pradeep Mishra, 2022. "The Quality of Fair Revaluation of Fixed Assets and Additional Calculations Aimed at Facilitating Prospective Investors’ Decisions," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    18. Proaño, Christian R. & Tarassow, Artur, 2018. "Evaluating the predicting power of ordered probit models for multiple business cycle phases in the U.S. and Japan," Journal of the Japanese and International Economies, Elsevier, vol. 50(C), pages 60-71.
    19. Xie, Pinjie & Shu, Yalin & Sun, Feihu & Pan, Xianyou, 2024. "Enhancing the accuracy of China's electricity consumption forecasting through economic cycle division: An MSAR-OPLS scenario analysis," Energy, Elsevier, vol. 293(C).
    20. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwbox:201714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.