IDEAS home Printed from https://ideas.repec.org/p/zbw/fubsbe/202114.html
   My bibliography  Save this paper

Inference on the maximal rank of time-varying covariance matrices using high-frequency data

Author

Listed:
  • Reiß, Markus
  • Winkelmann, Lars

Abstract

We study the rank of the instantaneous or spot covariance matrix ΣX(t) of a multidimensional continuous semi-martingale X(t). Given highfrequency observations X(i/n), i = 0,...,n, we test the null hypothesis rank (ΣX(t))

Suggested Citation

  • Reiß, Markus & Winkelmann, Lars, 2021. "Inference on the maximal rank of time-varying covariance matrices using high-frequency data," Discussion Papers 2021/14, Free University Berlin, School of Business & Economics.
  • Handle: RePEc:zbw:fubsbe:202114
    DOI: 10.17169/refubium-32210
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/246077/1/177616220X.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17169/refubium-32210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2021. "High-dimensional estimation of quadratic variation based on penalized realized variance," Papers 2103.03237, arXiv.org.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    4. Weiming Li & Jing Gao & Kunpeng Li & Qiwei Yao, 2016. "Modeling Multivariate Volatilities via Latent Common Factors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 564-573, October.
    5. Hoffmann, Marc, 2002. "Rate of convergence for parametric estimation in a stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 147-170, January.
    6. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    7. Su, Liangjun & Wang, Xia, 2017. "On time-varying factor models: Estimation and testing," Journal of Econometrics, Elsevier, vol. 198(1), pages 84-101.
    8. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    9. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    10. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    11. Yacine Aït-Sahalia & Dacheng Xiu, 2019. "Principal Component Analysis of High-Frequency Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 287-303, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaeheon Jung, 2019. "Estimating a Large Covariance Matrix in Time-varying Factor Models," Papers 1910.11965, arXiv.org.
    2. Matteo Barigozzi & Lorenzo Trapani, 2018. "Determining the dimension of factor structures in non-stationary large datasets," Papers 1806.03647, arXiv.org.
    3. Dovonon, Prosper & Taamouti, Abderrahim & Williams, Julian, 2022. "Testing the eigenvalue structure of spot and integrated covariance," Journal of Econometrics, Elsevier, vol. 229(2), pages 363-395.
    4. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    5. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    6. Venetis, Ioannis & Ladas, Avgoustinos, 2022. "Co-movement and global factors in sovereign bond yields," MPRA Paper 115801, University Library of Munich, Germany.
    7. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    8. Jushan Bai & Kunpeng Li, 2016. "Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
    9. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
    10. Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019. "On the robustness of the principal volatility components," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.
    11. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    12. Sung Hoon Choi & Donggyu Kim, 2022. "Large Volatility Matrix Analysis Using Global and National Factor Models," Papers 2208.12323, arXiv.org, revised Dec 2022.
    13. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
    14. Urga, Giovanni & Wang, Fa, 2022. "Estimation and inference for high dimensional factor model with regime switching," MPRA Paper 113172, University Library of Munich, Germany.
    15. He, Lingyu & Huang, Fei & Shi, Jianjie & Yang, Yanrong, 2021. "Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 14-34.
    16. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
    17. Yu, Long & He, Yong & Zhang, Xinsheng, 2019. "Robust factor number specification for large-dimensional elliptical factor model," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    18. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    19. Pegoraro, F. & Siegel, A. F. & Tiozzo Pezzoli, L., 2014. "Specification Analysis of International Treasury Yield Curve Factors," Working papers 490, Banque de France.
    20. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.

    More about this item

    Keywords

    empirical covariance matrix; rank detection; signal detection rate; matrix concentration; eigenvalue perturbation; principal component analysis; factor model; term structure;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fubsbe:202114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwfubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.