IDEAS home Printed from https://ideas.repec.org/p/zbw/cefswp/200810.html
   My bibliography  Save this paper

Why and how to integrate liquidity risk into a VaR-framework

Author

Listed:
  • Stange, Sebastian
  • Kaserer, Christoph

Abstract

We integrate liquidity risk measured by the weighted spread into a Value-at-Risk (VaR) framework. The weighted spread measure extracts liquidity costs by order size from the limit order book. We show that it is precise from a risk perspective in a wide range of clearly defined situations. Using a unique, representative data set provided by Deutsche Boerse AG, we find liquidity risk to increase traditionally-measured price risk by over 25%, even at standard 10-day horizons and for liquid DAX stocks. We also show that the common approach of simply adding liquidity risk to price risk substantially overestimates total risk because correlation between liquidity and price is neglected. Our results are robust with respect to changes in risk measure, to sample periods and to effects of portfolio diversification.

Suggested Citation

  • Stange, Sebastian & Kaserer, Christoph, 2008. "Why and how to integrate liquidity risk into a VaR-framework," CEFS Working Paper Series 2008-10, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
  • Handle: RePEc:zbw:cefswp:200810
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/48441/1/587947276.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anil Bangia & Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Modeling Liquidity Risk With Implications for Traditional Market Risk Measurement and Management," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-062, New York University, Leonard N. Stern School of Business-.
    2. Timotheos Angelidis & Alexandros Benos, 2006. "Liquidity adjusted value-at-risk based on the components of the bid-ask spread," Applied Financial Economics, Taylor & Francis Journals, vol. 16(11), pages 835-851.
    3. Hisata, Yoshifumi & Yamai, Yasuhiro, 2000. "Research toward the Practical Application of Liquidity Risk Evaluation Methods," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 18(2), pages 83-127, December.
    4. Carlo Acerbi & Giacomo Scandolo, 2008. "Liquidity risk theory and coherent measures of risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 681-692.
    5. Domowitz, Ian & Hansch, Oliver & Wang, Xiaoxin, 2005. "Liquidity commonality and return co-movement," Journal of Financial Markets, Elsevier, vol. 8(4), pages 351-376, November.
    6. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    7. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damiano Brigo & Mirela Predescu & Agostino Capponi, 2010. "Credit Default Swaps Liquidity modeling: A survey," Papers 1003.0889, arXiv.org, revised Mar 2010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernst, Cornelia & Stange, Sebastian & Kaserer, Christoph, 2012. "Measuring market liquidity risk - which model works best?," Journal of Financial Transformation, Capco Institute, vol. 35, pages 133-146.
    2. Luca Erzegovesi, 2002. "VaR and Liquidity Risk.Impact on Market Behaviour and Measurement Issues," Alea Tech Reports 014, Department of Computer and Management Sciences, University of Trento, Italy, revised 14 Jun 2008.
    3. Petr Strnad, 2009. "Market liquidity risk and its incorporation into value at risk [Riziko tržní likvidity a jeho zohlednění v ukazateli value at risk]," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2009(2), pages 21-37.
    4. Damiano Brigo & Mirela Predescu & Agostino Capponi, 2010. "Credit Default Swaps Liquidity modeling: A survey," Papers 1003.0889, arXiv.org, revised Mar 2010.
    5. Timotheos Angelidis & Alexandros Benos, 2009. "The Components of the Bid‐Ask Spread: the Case of the Athens Stock Exchange," European Financial Management, European Financial Management Association, vol. 15(1), pages 112-144, January.
    6. Qixuan Luo & Yu Shi & Xuan Zhou & Handong Li, 2021. "Research on the Effects of Institutional Liquidation Strategies on the Market Based on Multi-agent Model," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1025-1049, December.
    7. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    8. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    9. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    10. Schoeneborn, Torsten & Schied, Alexander, 2007. "Liquidation in the Face of Adversity: Stealth Vs. Sunshine Trading, Predatory Trading Vs. Liquidity Provision," MPRA Paper 5548, University Library of Munich, Germany.
    11. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    12. Samuel N. Cohen & Lukasz Szpruch, 2011. "A limit order book model for latency arbitrage," Papers 1110.4811, arXiv.org.
    13. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    14. Dionne, Georges & Pacurar, Maria & Zhou, Xiaozhou, 2015. "Liquidity-adjusted Intraday Value at Risk modeling and risk management: An application to data from Deutsche Börse," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 202-219.
    15. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    16. Wei Cui & Anthony Brabazon & Michael O'Neill, 2011. "Dynamic trade execution: a grammatical evolution approach," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 2(1/2), pages 4-31.
    17. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    18. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    19. Dimitri Vayanos & Jiang Wang, 2012. "Market Liquidity -- Theory and Empirical Evidence," NBER Working Papers 18251, National Bureau of Economic Research, Inc.
    20. Mauricio Labadie & Charles-Albert Lehalle, 2012. "Optimal starting times, stopping times and risk measures for algorithmic trading: Target Close and Implementation Shortfall," Papers 1205.3482, arXiv.org, revised Dec 2013.

    More about this item

    Keywords

    asset liquidity; price impact; weighted spread; Xetra Liquidity Measure (XLM); Value-at-Risk; market liquidity risk;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cefswp:200810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwtumde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.