IDEAS home Printed from
   My bibliography  Save this paper

Exact tests and confidence sets for the tail coefficient of a-stable distributions


  • Dufour, Jean-Marie
  • Kurz-Kim, Jeong-Ryeol


In this paper, using the Monte Carlo (MC) method we propose an estimation and (at the same time) a test procedure for the stability parameter of a-stable distributions. One powerful advantage of the MC method is that it provides an exact significance level for finite samples, whose distribution can be far different from that of asymptotic samples on which the level of confidence interval for estimates is usually based. Statistical theory for the MC method is given. A simulation study compares the efficiency of our estimate with the Hill estimate (Hill, 1975). Construction of significance level based on the MC method is exploited and the corresponding power function is also studied. An empirical application demonstrates an easy implementation of our estimation and test procedure. It turns out that our estimate can improve the efficiency of any estimator for a in terms of mean square error.

Suggested Citation

  • Dufour, Jean-Marie & Kurz-Kim, Jeong-Ryeol, 2003. "Exact tests and confidence sets for the tail coefficient of a-stable distributions," Discussion Paper Series 1: Economic Studies 2003,16, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp1:4213

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    2. McCulloch, J Huston, 1997. "Measuring Tail Thickness to Estimate the Stable Index Alpha: A Critique," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 74-81, January.
    3. Weron, Rafal, 1996. "On the Chambers-Mallows-Stuck method for simulating skewed stable random variables," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 165-171, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Miller, J. Isaac & Park, Joon Y., 2005. "How They Interact to Generate Persistency in Memory," Working Papers 2005-01, Rice University, Department of Economics.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:4213. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.