IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Optimal portfolios using linear programming models

  • Christos Papahristodoulou

    (Mälardalen University, School of Business)

  • Erik Dotzauer

    (Mälardalen University, Department of Mathematics)

The classical Quadratic Programming (QP) formulation of the well-known portfolio selection problem has traditionally been regarded as cumbersome and time consuming. This paper formulates two additional models, (i) maximin, and (ii) minimization of mean absolute deviation. Data from 67 securities over 48 months are used to examine to what extent all three formulations provide similar portfolios. As expected, the maximin formulation yields the highest return and risk, while the QP formulation provides the lowest risk and return, which also creates the efficient frontier. The minimization of mean absolute deviation is close to the QP formulation. When the expected returns are confronted with the true ones at the end of a six months period, the maximin portfolios seem to be the most robust of all.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://128.118.178.162/eps/fin/papers/0505/0505006.pdf
Download Restriction: no

Paper provided by EconWPA in its series Finance with number 0505006.

as
in new window

Length:
Date of creation: 04 May 2005
Date of revision:
Handle: RePEc:wpa:wuwpfi:0505006
Note: Type of Document - pdf. Published in Journal of the Operational research Society (2004) 55, 1169-1177
Contact details of provider: Web page: http://128.118.178.162

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Leon, T. & Liern, V. & Vercher, E., 2002. "Viability of infeasible portfolio selection problems: A fuzzy approach," European Journal of Operational Research, Elsevier, vol. 139(1), pages 178-189, May.
  2. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
  3. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
  4. Rudolf, Markus & Wolter, Hans-Jurgen & Zimmermann, Heinz, 1999. "A linear model for tracking error minimization," Journal of Banking & Finance, Elsevier, vol. 23(1), pages 85-103, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0505006. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.