IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

On the Variance Covariance Matrix of the Maximum Likelihood Estimator of a Discrete Mixture

Listed author(s):
  • Gauthier Lanot

    (Keele University, UK)

The estimation of models involving discrete mixtures is a common practice in econometrics, for example to account for unobserved heterogeneity. However, the literature is relatively uninformative about the measurement of the precision of the parameters. This note provides an analytical expression for the observed information matrix in terms of the gradient and hessian of the latent model when the number of components of the discrete mixture is known. This in turn allows for the estimation of the variance covariance matrix of the ML estimator of the parameters. I discuss further two possible applications of the result: the acceleration of the EM algorithm and the specification testing with the information matrix test.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Econometrics with number 0211001.

in new window

Length: 16 pages
Date of creation: 05 Nov 2002
Handle: RePEc:wpa:wuwpem:0211001
Note: Type of Document - pdf; prepared on pc; pages: 16
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0211001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.