IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/99-07-052.html
   My bibliography  Save this paper

Using Adaptive Agent-Based Simulation Models to Assist Planners in Policy Development: The Case of Rent Control

Author

Listed:
  • Robert N. Bernard

Abstract

Computer simulation modeling for policy development in planning has had difficulty gaining a consistent foothold. Reasons for this include bad experiences with large-scale, comprehensive models (e.g., Forrester, 1969) and the lack of theory that one can quantify (Batty, 1994). Batty (1994) has suggested that new types of computational models, based on the tenets of complexity theory (Bernard, under revision) may prove useful. One type of complexity theory model is an "adaptive agent based model" in which the actions, interactions, and adaptations of many autonomous, heterogeneous "agents" (households, firms, etc.) produce emergent, system-wide behavior. One can examine this emergent behavior using commonly employed metrics, but one can also garner a richer, more intuitive understanding of how the individual behavior of the agents self-organize to produce the entire system. Using this type of modeling for small-scale planning problems can both inform planning theorists and improve planning practice by providing rich understanding that standard quantitative models do not. In this paper, I will present an agent-based model of rent control. Household agents (with different income levels) rented apartments from landlord agents Ð these apartments were situated on a lattice. Landlord agents continually adapted to the conditions of the marketplace (apartment demand, type of rent control in place, and so on, raising and lowering their prices as they saw fit. I varied conditions of rent decontrol and measured various metrics, such as vacancy rate, apartment quality, tenant income, and average rent paid. I found that a market with rent control typically has tenants with lower incomes than a non-rent controlled market, even substantially after the market has been suddenly decontrolled. In addition, I found that there were lower vacancy rates in regimes of rent control. As these results are not based on actual data, they are merely presented as suggestive. In fact, the point of abstract computational models such as the one presented here is not as the ultimate predictors of policy decisions, but as tools to inform and provoke discussion among policy makers. Thus, I will conclude by speculating on the use of adaptive agent-based models for assisting in policy formulation.

Suggested Citation

  • Robert N. Bernard, 1999. "Using Adaptive Agent-Based Simulation Models to Assist Planners in Policy Development: The Case of Rent Control," Working Papers 99-07-052, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:99-07-052
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    2. Richard Arnott, 1995. "Time for Revisionism on Rent Control?," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 99-120, Winter.
    3. Gregory K. Ingram & John F. Kain & J. Royce Ginn, 1972. "The Detroit Prototype of the NBER Urban Simulation Model," NBER Books, National Bureau of Economic Research, Inc, number ingr72-1, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Allometry; fractal geometry; scaling in biology;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:99-07-052. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/epstfus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.