IDEAS home Printed from https://ideas.repec.org/p/wop/iasawp/wp96114.html
   My bibliography  Save this paper

Evolutionary Singular Strategies and the Adaptive Growth and Branching of the Evolutionary Tree

Author

Listed:
  • S.A.H. Geritz
  • E. Kisdi
  • G. Meszena
  • J.A.J. Metz

Abstract

We present a general framework for modeling adaptive traitdynamics in which we integrate various concepts and techniques from modern ESS-theory. The concept of evolutionarily singular strategies is introduced as a generalization of the ESS-concept. We give a full classification of the singular strategies in terms of ESS-stability, convergence stability, the ability of the singular strategy to invade other populations if initially rare itself, and the possibility of protected dimorphisms occuring within the singular strategy's neighborhood. Of particular interest is a type of singular strategy that is an evolutionary attractor from a large distance, but once in its neighborhood a population becomes dimorphic and undergoes disruptive selection leading to evolutionary branching. Modelling the adaptive growth and branching of the evolutionary tree thus can be considered as a major application of the framework. A haploid version of Levene's 'soft selection model is developed as a specific example in order to demonstrate evolutionary dynamics and branching in monomorphic and polymorphic populations.

Suggested Citation

  • S.A.H. Geritz & E. Kisdi & G. Meszena & J.A.J. Metz, 1996. "Evolutionary Singular Strategies and the Adaptive Growth and Branching of the Evolutionary Tree," Working Papers wp96114, International Institute for Applied Systems Analysis.
  • Handle: RePEc:wop:iasawp:wp96114
    as

    Download full text from publisher

    File URL: http://www.iiasa.ac.at/Publications/Documents/WP-96-114.pdf
    Download Restriction: no

    File URL: http://www.iiasa.ac.at/Publications/Documents/WP-96-114.ps
    Download Restriction: no

    References listed on IDEAS

    as
    1. U. Dieckmann & R. Law, 1996. "The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes," Working Papers wp96001, International Institute for Applied Systems Analysis.
    2. P. Marrow & U. Dieckmann & R. Law, 1996. "Evolutionary Dynamics of Predator-Prey Systems: An Ecological Perspective," Working Papers wp96002, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:iasawp:wp96114. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/iiasaat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.