IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa11p966.html
   My bibliography  Save this paper

A Comparison of Grading Models for Neighborhood Level of Family Housing Units

Author

Listed:
  • Zeynep Gamze Mert

    ()

  • Serhat Yilmaz

    ()

  • Ertan Mert

    ()

Abstract

More recently Turkey has witnessed fast housing development and real estate sector growth because of the mortgage preparations. With this development, property location quality has been considered important for selecting and paying them. This study uses a data set of new single family housing units in Kocaeli University Campus Area. By using 4 location quality criteria, 27 single family housing units are graded at the neighborhood level. It is aimed to examine the applications of grading property at the neighborhood level based on property location quality by testing with three methods. Traditional method and fuzzy logic method were discussed in our antecedent studies. In this study, an easy used numerical calculation method; Neural Networks (NN), is introduced. Its grading performance is compared with the previous methods. NN method is found to be more accurate and realistic than traditional grading approach where its designing stage is more practical and faster than fuzzy logic approach.

Suggested Citation

  • Zeynep Gamze Mert & Serhat Yilmaz & Ertan Mert, 2011. "A Comparison of Grading Models for Neighborhood Level of Family Housing Units," ERSA conference papers ersa11p966, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa11p966
    as

    Download full text from publisher

    File URL: http://www-sre.wu.ac.at/ersa/ersaconfs/ersa11/e110830aFinal00966.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Allan Din & Martin Hoesli & Andre Bender, 2001. "Environmental Variables and Real Estate Prices," Urban Studies, Urban Studies Journal Limited, vol. 38(11), pages 1989-2000, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa11p966. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier). General contact details of provider: http://www.ersa.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.