IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Unfolding a symmetric matrix

Listed author(s):

Graphical displays which show inter--sample distances are important for the interpretation and presentation of multivariate data. Except when the displays are two--dimensional, however, they are often difficult to visualize as a whole. A device, based on multidimensional unfolding, is described for presenting some intrinsically high--dimensional displays in fewer, usually two, dimensions. This goal is achieved by representing each sample by a pair of points, say $R_i$ and $r_i$, so that a theoretical distance between the $i$-th and $j$-th samples is represented twice, once by the distance between $R_i$ and $r_j$ and once by the distance between $R_j$ and $r_i$. Self--distances between $R_i$ and $r_i$ need not be zero. The mathematical conditions for unfolding to exhibit symmetry are established. Algorithms for finding approximate fits, not constrained to be symmetric, are discussed and some examples are given.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Whole Paper
Download Restriction: no

Paper provided by Department of Economics and Business, Universitat Pompeu Fabra in its series Economics Working Papers with number 154.

in new window

Date of creation: Jan 1996
Handle: RePEc:upf:upfgen:154
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. E. Gold, 1973. "Metric unfolding: Data requirement for unique solution & clarification of Schönemann's algorithm," Psychometrika, Springer;The Psychometric Society, vol. 38(4), pages 555-569, December.
  2. Michael Greenacre & Michael Browne, 1986. "An efficient alternating least-squares algorithm to perform multidimensional unfolding," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 241-250, June.
  3. M. Browne, 1987. "The Young-Householder algorithm and the least squares multidimensional scaling of squared distances," Journal of Classification, Springer;The Classification Society, vol. 4(2), pages 175-190, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:154. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.