IDEAS home Printed from https://ideas.repec.org/p/tse/iastwp/127397.html
   My bibliography  Save this paper

Evolutionary Game Theory and the Adaptive Dynamics Approach: Adaptation where Individuals Interact

Author

Listed:
  • Avila, Piret
  • Mullon, Charles

Abstract

Evolutionary game theory and the adaptive dynamics approach have made invaluable contributions to understand how gradual evolution leads to adaptation when individuals interact. Here, we review some of the basic tools that have come out of these contributions to model the evolution of quantitative traits in complex populations. We collect together mathematical expressions that describe directional and disruptive selection in class- and group-structured populations in terms of individual fitness, with the aims of bridging different models and interpreting selection. In particular, our review of disruptive selection suggests there are two main paths that can lead to diversity: (i) when individual fitness increases more than linearly with trait expression; (ii) when trait expression simultaneously increases the probability that an individual is in a certain context (e.g. a given age, sex, habitat, size or social environment) and fitness in that context. We provide various examples of these and more broadly argue that population structure lays the ground for the emergence of polymorphism with unique characteristics. Beyond this, we hope that the descriptions of selection we present here help see the tight links among fundamental branches of evolutionary biology, from life-history to social evolution through evolutionary ecology, and thus favour further their integration.

Suggested Citation

  • Avila, Piret & Mullon, Charles, 2023. "Evolutionary Game Theory and the Adaptive Dynamics Approach: Adaptation where Individuals Interact," IAST Working Papers 23-150, Institute for Advanced Study in Toulouse (IAST).
  • Handle: RePEc:tse:iastwp:127397
    as

    Download full text from publisher

    File URL: http://iast.fr/pub/127397
    File Function: null
    Download Restriction: no

    File URL: https://www.iast.fr/sites/default/files/IAST/wp/wp_iast_150.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parvinen, Kalle, 2013. "Joint evolution of altruistic cooperation and dispersal in a metapopulation of small local populations," Theoretical Population Biology, Elsevier, vol. 85(C), pages 12-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ingela Alger & Laurent Lehmann, 2023. "Evolution of Semi-Kantian Preferences in Two-Player Assortative Interactions with Complete and Incomplete Information and Plasticity," Dynamic Games and Applications, Springer, vol. 13(4), pages 1288-1319, December.
    2. Feng, Minyu & Han, Songlin & Li, Qin & Wu, Juan & Kurths, Jürgen, 2023. "Harmful strong agents and asymmetric interaction can promote the frequency of cooperation in the snowdrift game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
    4. Avila, Piret & Lehmann, Laurent, 2023. "Life history and mutation rate joint evolution," IAST Working Papers 23-151, Institute for Advanced Study in Toulouse (IAST).
    5. Éloi Martin & Sabin Lessard, 2023. "Assortment by Group Founders Always Promotes the Evolution of Cooperation Under Global Selection But Can Oppose it Under Local Selection," Dynamic Games and Applications, Springer, vol. 13(4), pages 1194-1218, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Priklopil, Tadeas & Lehmann, Laurent, 2021. "Metacommunities, fitness and gradual evolution," Theoretical Population Biology, Elsevier, vol. 142(C), pages 12-35.
    2. Jaideep Joshi & Åke Brännström & Ulf Dieckmann, 2020. "Emergence of social inequality in the spatial harvesting of renewable public goods," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-25, January.
    3. Young, Glenn & Belmonte, Andrew, 2018. "Fast cheater migration stabilizes coexistence in a public goods dilemma on networks," Theoretical Population Biology, Elsevier, vol. 121(C), pages 12-25.
    4. F. Débarre, 2020. "Imperfect Strategy Transmission Can Reverse the Role of Population Viscosity on the Evolution of Altruism," Dynamic Games and Applications, Springer, vol. 10(3), pages 732-763, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:iastwp:127397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/iasttfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.