IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v10y2020i3d10.1007_s13235-019-00326-y.html
   My bibliography  Save this article

Imperfect Strategy Transmission Can Reverse the Role of Population Viscosity on the Evolution of Altruism

Author

Listed:
  • F. Débarre

    (Sorbonne Université, CNRS, Université Paris Est Créteil, INRA, IRD, Institute of Ecology and Environmental - Paris, IEES-Paris, UMR 7618)

Abstract

Population viscosity, i.e., low emigration out of the natal deme, leads to high within-deme relatedness, which is beneficial to the evolution of altruistic behavior when social interactions take place among deme-mates. However, a detrimental side effect of low emigration is the increase in competition among related individuals. The evolution of altruism depends on the balance between these opposite effects. This balance is already known to be affected by details of the life cycle; we show here that it further depends on the fidelity of strategy transmission from parents to their offspring. We consider different life cycles and identify thresholds of parent–offspring strategy transmission inaccuracy, above which higher emigration can increase the frequency of altruists maintained in the population. Predictions were first obtained analytically assuming weak selection and equal deme sizes and then confirmed with stochastic simulations relaxing these assumptions. Contrary to what happens with perfect strategy transmission from parent to offspring, our results show that higher emigration can be favorable to the evolution of altruism.

Suggested Citation

  • F. Débarre, 2020. "Imperfect Strategy Transmission Can Reverse the Role of Population Viscosity on the Evolution of Altruism," Dynamic Games and Applications, Springer, vol. 10(3), pages 732-763, September.
  • Handle: RePEc:spr:dyngam:v:10:y:2020:i:3:d:10.1007_s13235-019-00326-y
    DOI: 10.1007/s13235-019-00326-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-019-00326-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-019-00326-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    2. Katrin Hammerschmidt & Caroline J. Rose & Benjamin Kerr & Paul B. Rainey, 2014. "Life cycles, fitness decoupling and the evolution of multicellularity," Nature, Nature, vol. 515(7525), pages 75-79, November.
    3. Parvinen, Kalle, 2013. "Joint evolution of altruistic cooperation and dispersal in a metapopulation of small local populations," Theoretical Population Biology, Elsevier, vol. 85(C), pages 12-19.
    4. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    5. F. Débarre & C. Hauert & M. Doebeli, 2014. "Social evolution in structured populations," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    6. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    7. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    2. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    3. Fulin Guo, 2023. "Experience-weighted attraction learning in network coordination games," Papers 2310.18835, arXiv.org.
    4. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    5. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    6. Sakiyama, Tomoko, 2021. "A power law network in an evolutionary hawk–dove game," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    8. Zhang, Wei, 2024. "Network reciprocity and inequality: The role of additional mixing links among social groups," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Xiaochen Wang & Lei Zhou & Alex McAvoy & Aming Li, 2023. "Imitation dynamics on networks with incomplete information," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Josef Tkadlec & Andreas Pavlogiannis & Krishnendu Chatterjee & Martin A Nowak, 2020. "Limits on amplifiers of natural selection under death-Birth updating," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-13, January.
    11. Alex McAvoy & Andrew Rao & Christoph Hauert, 2021. "Intriguing effects of selection intensity on the evolution of prosocial behaviors," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-21, November.
    12. David V McLeod & Troy Day, 2019. "Social evolution under demographic stochasticity," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-13, February.
    13. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    14. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    15. Benjamin Allen & Christine Sample & Yulia Dementieva & Ruben C Medeiros & Christopher Paoletti & Martin A Nowak, 2015. "The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-32, February.
    16. Christopher Graser & Takako Fujiwara-Greve & Julian García & Matthijs van Veelen, 2024. "Repeated games with partner choice," Tinbergen Institute Discussion Papers 24-038/I, Tinbergen Institute.
    17. Jiang, Zhi-Qiang & Wang, Peng & Ma, Jun-Chao & Zhu, Peican & Han, Zhen & Podobnik, Boris & Stanley, H. Eugene & Zhou, Wei-Xing & Alfaro-Bittner, Karin & Boccaletti, Stefano, 2023. "Unraveling the effects of network, direct and indirect reciprocity in online societies," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    18. Hendrik Richter, 2020. "Evolution of Cooperation for Multiple Mutant Configurations on All Regular Graphs with N ≤ 14 Players," Games, MDPI, vol. 11(1), pages 1-18, February.
    19. Wang, Shengxian & Chen, Xiaojie & Xiao, Zhilong & Szolnoki, Attila, 2022. "Decentralized incentives for general well-being in networked public goods game," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    20. Tekwa, Edward W. & Gonzalez, Andrew & Loreau, Michel, 2019. "Spatial evolutionary dynamics produce a negative cooperation–population size relationship," Theoretical Population Biology, Elsevier, vol. 125(C), pages 94-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:10:y:2020:i:3:d:10.1007_s13235-019-00326-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.