IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Optimal Adaptive Testing: Informativeness and Incentives

Listed author(s):
  • Rahul Deb
  • Colin Stewart

We introduce a learning framework in which a principal seeks to determine the ability of a strategic agent. The principal assigns a test consisting of a finite sequence of questions or tasks. The test is adaptive: each question that is assigned can depend on the agent's past performance. The probability of success on a question is jointly determined by the agent's privately known ability and an unobserved action that he chooses to maximize the probability of passing the test. We identify a simple monotonicity condition under which the principal always employs the most (statistically) informative question in the optimal adaptive test. Conversely, whenever the condition is violated, we show that there are cases in which the principal strictly prefers to use less informative questions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://www.economics.utoronto.ca/public/workingPapers/tecipa-551.pdf
File Function: Main Text
Download Restriction: no

Paper provided by University of Toronto, Department of Economics in its series Working Papers with number tecipa-551.

as
in new window

Length: Unknown pages
Date of creation: 30 Oct 2015
Handle: RePEc:tor:tecipa:tecipa-551
Contact details of provider: Postal:
150 St. George Street, Toronto, Ontario

Phone: (416) 978-5283

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-551. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePEc Maintainer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.