IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Bootstrap-based Bandwidth Selection for Semiparametric Generalized Regression Estimators

Listed author(s):
  • Chuan Goh

This paper considers the problem of implementing semiparametric extremum estimators of a generalized regression model with an unknown link function. The class of estimator under consideration includes as special cases the semiparametric least-squares estimator of Ichimura (1993) as well as the semiparametric quasi-likelihood estimator of Klein and Spady (1993). In general, it is assumed to involve the computation of a nonparametric kernel estimate of the link function that appears in place of the true, but unknown, link function in the appropriate location in a smooth criterion function. The specific question considered in this paper concerns the practical selection of the degree of smoothing to be used in computing the nonparametric regression estimate. This paper proposes a method for selecting the smoothing parameter via resampling. The particular method suggested here involves using a resample of smaller size than the original sample. Specific guidance on selecting the resample size is given, and simulation evidence is presented to illustrate the utility of this method for samples of moderate size.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Main Text
Download Restriction: no

Paper provided by University of Toronto, Department of Economics in its series Working Papers with number tecipa-375.

in new window

Length: 44 pages
Date of creation: 09 Oct 2009
Handle: RePEc:tor:tecipa:tecipa-375
Contact details of provider: Postal:
150 St. George Street, Toronto, Ontario

Phone: (416) 978-5283

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
  2. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
  3. Sherman, Robert P., 1994. "U-Processes in the Analysis of a Generalized Semiparametric Regression Estimator," Econometric Theory, Cambridge University Press, vol. 10(02), pages 372-395, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-375. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePEc Maintainer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.