PyTimeVar: A Python Package for Trending Time-Varying Time Series Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peter C. B. Phillips & Zhentao Shi, 2021.
"Boosting: Why You Can Use The Hp Filter,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
- Peter C.B. Phillips & Zhentao Shi, 2019. "Boosting: Why you Can Use the HP Filter," Cowles Foundation Discussion Papers 2212, Cowles Foundation for Research in Economics, Yale University.
- Peter C. B. Phillips & Zhentao Shi, 2019. "Boosting: Why You Can Use the HP Filter," Papers 1905.00175, arXiv.org, revised Nov 2020.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Tom Doan, "undated". "SEASONALDLM: RATS procedure to create the matrices for the seasonal component of a DLM," Statistical Software Components RTS00251, Boston College Department of Economics.
- Ren, Boru & Lucey, Brian, 2023. "Herding in the Chinese renewable energy market: Evidence from a bootstrapping time-varying coefficient autoregressive model," Energy Economics, Elsevier, vol. 119(C).
- Xiaoye Li & Zhibiao Zhao, 2019. "A time varying approach to the stock return–inflation puzzle," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(5), pages 1509-1528, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yicong Lin & Mingxuan Song, 2023. "Robust bootstrap inference for linear time-varying coefficient models: Some Monte Carlo evidence," Tinbergen Institute Discussion Papers 23-049/III, Tinbergen Institute.
- Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
- Viv B. Hall & Peter Thomson, 2021.
"Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
- Hall, Viv B & Thomson, Peter, 2020. "Does Hamilton’s OLS regression provide a “better alternative” to the Hodrick-Prescott filter? A New Zealand Business Cycle Perspective," Working Paper Series 21070, Victoria University of Wellington, School of Economics and Finance.
- Viv B Hall & Peter Thomson, 2020.
"Does Hamilton’s OLS regression provide a “better alternative†to the Hodrick-Prescott filter? A New Zealand business cycle perspective,"
CAMA Working Papers
2020-71, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hall, Viv B & Thomson, Peter, 2020. "Does Hamilton’s OLS regression provide a “better alternative†to the Hodrick-Prescott filter? A New Zealand Business Cycle Perspective," Working Paper Series 8956, Victoria University of Wellington, School of Economics and Finance.
- Viv B. Hall & Peter Thomson, 2022.
"A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy,"
CAMA Working Papers
2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 21184, Victoria University of Wellington, School of Economics and Finance.
- Victor Bystrov, 2018.
"Measuring the Natural Rates of Interest in Germany and Italy,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
- Bystrov Victor, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Lodz Economics Working Papers 7/2018, University of Lodz, Faculty of Economics and Sociology.
- Yukai Yang & Luc Bauwens, 2018.
"State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering,"
Econometrics, MDPI, vol. 6(4), pages 1-22, December.
- Yukai Yang & Luc Bauwens, 2018. "State-space models on the Stiefel Manifold with a new approach to nonlinear filtering," LIDAM Reprints CORE 2985, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with A New Approach to Nonlinear Filtering," CREATES Research Papers 2018-30, Department of Economics and Business Economics, Aarhus University.
- Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
- Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
- Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
- François R. Velde, 2009.
"Chronicle of a Deflation Unforetold,"
Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
- Francois R. Velde, 2006. "Chronicles of a deflation unforetold," Working Paper Series WP-06-12, Federal Reserve Bank of Chicago.
- Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
- repec:zbw:bofitp:2019_008 is not listed on IDEAS
- Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
- Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
- Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
- repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
- Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
- Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021.
"Predicting benchmarked US state employment data in real time,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
- Scott Brave & Charles S. Gascon & William Kluender & Thomas Walstrum, 2019. "Predicting Benchmarked US State Employment Data in Realtime," Working Paper Series WP 2019-11, Federal Reserve Bank of Chicago.
- Scott A. Brave & Charles S. Gascon & William Kluender & Thomas Walstrum, 2019. "Predicting Benchmarked US State Employment Data in Real Time," Working Papers 2019-037, Federal Reserve Bank of St. Louis, revised 11 Mar 2021.
- Alejandro Rodriguez & Esther Ruiz, 2009.
"Bootstrap prediction intervals in state–space models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
- Rodríguez, Alejandro, 2008. "Bootstrap prediction intervals in State Space models," DES - Working Papers. Statistics and Econometrics. WS ws081104, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
- Jean-Luc Gaffard, 2014.
"Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre,"
Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
- Jean-Luc Gaffard, 2012. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," SciencePo Working papers Main hal-01070291, HAL.
- Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," SciencePo Working papers Main halshs-00931247, HAL.
- Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Post-Print halshs-00931247, HAL.
- Jean Luc Gaffard, 2012. "Crise de la theorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Documents de Travail de l'OFCE 2012-10, Observatoire Francais des Conjonctures Economiques (OFCE).
- Jean-Luc Gaffard, 2012. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Working Papers hal-01070291, HAL.
More about this item
Keywords
time-varying; bootstrap; nonparametric estimation; boosted Hodrick-Prescott filter; power-law trend; score-driven; state-space;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2025-02-17 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20240060. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.