IDEAS home Printed from
   My bibliography  Save this paper

Sri Lankan Electricity Supply Industry: A Critique of Proposed Reforms


  • Himanshu A. Amarawickrama

    (Surrey Energy Economics Centre (SEEC), Department of Economics, University of Surrey)

  • Lester C Hunt

    () (Surrey Energy Economics Centre (SEEC), Department of Economics, University of Surrey)


In 2002 the Government of Sri Lanka proposed power sector policy guidelines for the first time in its history in order to facilitate the restructuring of the sector. This paper attempts to critically examine and appraise the Government’s proposals with suggestions for improvements. The methodology employed is to first examine the requirements of the Sri Lankan power sector by analysing the current problems that the power sector faces and to empirically estimate electricity demand to identify the future consumption and capacity expansion needs of the sector. Secondly, it is assessed to what extent the proposed reforms address the requirements of the sector identified above. Finally, alternative proposals are introduced in order to address the identified flaws in the current proposed reforms.

Suggested Citation

  • Himanshu A. Amarawickrama & Lester C Hunt, 2004. "Sri Lankan Electricity Supply Industry: A Critique of Proposed Reforms," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 109, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
  • Handle: RePEc:sur:seedps:109

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-80.
    2. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    3. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    4. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    5. Hosier, Richard H. & Dowd, Jeffrey, 1987. "Household fuel choice in Zimbabwe : An empirical test of the energy ladder hypothesis," Resources and Energy, Elsevier, vol. 9(4), pages 347-361, December.
    6. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    7. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    8. Jeffrey I. Bernstein, 1988. "Costs of Production, Intra- and Interindustry R&D Spillovers: Canadian Evidence," Canadian Journal of Economics, Canadian Economics Association, vol. 21(2), pages 324-347, May.
    9. Bennett, M & Cooke, D & Catherine Waddams-Price, 2002. "Left out in the cold? New energy tariffs, low-income households and the fuel poor," Fiscal Studies, Institute for Fiscal Studies, vol. 23(2), pages 167-194, June.
    10. Boyd, Gale A. & Pang, Joseph X., 2000. "Estimating the linkage between energy efficiency and productivity," Energy Policy, Elsevier, vol. 28(5), pages 289-296, May.
    11. He, Xiaoping & Reiner, David, 2016. "Electricity demand and basic needs: Empirical evidence from China's households," Energy Policy, Elsevier, vol. 90(C), pages 212-221.
    12. Audretsch, David B & Feldman, Maryann P, 1996. "R&D Spillovers and the Geography of Innovation and Production," American Economic Review, American Economic Association, vol. 86(3), pages 630-640, June.
    13. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    14. Eakins, John, 2016. "An application of the double hurdle model to petrol and diesel household expenditures in Ireland," Transport Policy, Elsevier, vol. 47(C), pages 84-93.
    15. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    16. Boardman, Brenda, 2004. "New directions for household energy efficiency: evidence from the UK," Energy Policy, Elsevier, vol. 32(17), pages 1921-1933, November.
    17. Lu, Wei, 2006. "Potential energy savings and environmental impact by implementing energy efficiency standard for household refrigerators in China," Energy Policy, Elsevier, vol. 34(13), pages 1583-1589, September.
    18. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    19. Chen, Zhuo & Song, Shunfeng, 2008. "Efficiency and technology gap in China's agriculture: A regional meta-frontier analysis," China Economic Review, Elsevier, vol. 19(2), pages 287-296, June.
    20. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    21. Massimo Filippini & Lin Zhang, 2013. "Measurement of the “Underlying energy efficiency” in Chinese provinces," CER-ETH Economics working paper series 13/183, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    22. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    23. Halvorsen, Robert, 1975. "Residential Demand for Electric Energy," The Review of Economics and Statistics, MIT Press, vol. 57(1), pages 12-18, February.
    24. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    25. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
    26. Cohen, Wesley M. & Goto, Akira & Nagata, Akiya & Nelson, Richard R. & Walsh, John P., 2002. "R&D spillovers, patents and the incentives to innovate in Japan and the United States," Research Policy, Elsevier, vol. 31(8-9), pages 1349-1367, December.
    27. Leach, Gerald, 1992. "The energy transition," Energy Policy, Elsevier, vol. 20(2), pages 116-123, February.
    28. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    29. Reddy, B. Sudhakara, 2003. "Overcoming the energy efficiency gap in India's household sector," Energy Policy, Elsevier, vol. 31(11), pages 1117-1127, September.
    30. Tiwari, Piyush, 2000. "Architectural, Demographic, and Economic Causes of Electricity Consumption in Bombay," Journal of Policy Modeling, Elsevier, vol. 22(1), pages 81-98, January.
    31. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    32. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    33. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, March.
    34. Oikonomou, V. & Becchis, F. & Steg, L. & Russolillo, D., 2009. "Energy saving and energy efficiency concepts for policy making," Energy Policy, Elsevier, vol. 37(11), pages 4787-4796, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fakhri J. Hasanov & Lester C. Hunt & Ceyhun I. Mikayilov, 2016. "Modeling and Forecasting Electricity Demand in Azerbaijan Using Cointegration Techniques," Energies, MDPI, Open Access Journal, vol. 9(12), pages 1-31, December.
    2. Amarawickrama, Himanshu A. & Hunt, Lester C., 2008. "Electricity demand for Sri Lanka: A time series analysis," Energy, Elsevier, vol. 33(5), pages 724-739.
    3. Singh,Anoop & Jamasb,Tooraj & Nepal,Rabindra & Toman,Michael A., 2015. "Cross-border electricity cooperation in South Asia," Policy Research Working Paper Series 7328, The World Bank.

    More about this item


    Developing Countries; Electricity Supply Industry; Power Policy; Sri Lanka;

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sur:seedps:109. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mona Chitnis). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.