IDEAS home Printed from https://ideas.repec.org/p/sgc/wpaper/41.html
   My bibliography  Save this paper

Evaluating the costs of desalination and water transport

Author

Listed:
  • Zhou Yuan
  • Richard S.J. Tol

    () (Economic and Social Research Institute, Dublin)

Abstract

Many regions of the world are facing formidable freshwater scarcity. Although there is substantial scope for economizing on the consumption of water without affecting its service level, the main response to water scarcity has been to increase the supply. To a large extent, this is done by transporting water from places where it is abundant to places where it is scarce. At a smaller scale, and without a lot of public and political attention, people have started to tap into the sheer limitless resource of desalinated water. This study looks at the development of desalination and its costs over time. The unit costs of desalinated water for five main processes are evaluated, followed by regressions to analyze the main influencing factors to the costs. The unit costs for all processes have fallen considerably over the years. This study suggests that a cost of 1 $/m3 for seawater desalination and 0.6 $/m3 for brackish water would be feasible today. The costs will continue to decline in the future as technology progresses. In addition, a literature review on the costs of water transport is conducted in order to estimate the total cost of desalination and the transport of desalinated water to selected water stress cities. Transport costs range from a few cents per cubic meter to over a dollar. A 100 m vertical lift is about as costly as a 100 km horizontal transport (0.05-0.06$/m3). Transport makes desalinated water prohibitively expensive in highlands and continental interiors, but not elsewhere.

Suggested Citation

  • Zhou Yuan & Richard S.J. Tol, 2004. "Evaluating the costs of desalination and water transport," Working Papers FNU-41, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2004.
  • Handle: RePEc:sgc:wpaper:41
    as

    Download full text from publisher

    File URL: http://www.fnu.zmaw.de/fileadmin/fnu-files/publication/working-papers/DesalinationFNU41_revised.pdf
    File Function: First version, 2004
    Download Restriction: no

    References listed on IDEAS

    as
    1. Heng-Chi Lee & Bruce McCarl & Uwe Schneider & Chi-Chung Chen, 2007. "Leakage and Comparative Advantage Implications of Agricultural Participation in Greenhouse Gas Emission Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 471-494, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damerau, Kerstin & Williges, Keith & Patt, Anthony G. & Gauché, Paul, 2011. "Costs of reducing water use of concentrating solar power to sustainable levels: Scenarios for North Africa," Energy Policy, Elsevier, vol. 39(7), pages 4391-4398, July.
    2. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    3. Debaere, Peter, 2012. "The Global Economics of Water: Is Water A Source of Comparative Advantage?," CEPR Discussion Papers 9030, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    water cost; desalination; water transport; MSF; RO; water shortage;

    JEL classification:

    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgc:wpaper:41. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Uwe Schneider). General contact details of provider: http://edirc.repec.org/data/zmhamde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.