IDEAS home Printed from https://ideas.repec.org/p/sce/scecf0/327.html
   My bibliography  Save this paper

Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models

Author

Listed:
  • Jie-Shin Lin

    (University of Manchester)

  • Chris Birchenhall

Abstract

The last years have been seen an extraordinary flourishing of works studying learning and adaptive behaviour in diverse fields. Following the fashion of computer innovation, there has been a growing interest in application to economic models of learning procedure developed in evolutionary computation tools such as genetic algorithms. Accordingly then, the use of computer simulation based on the related genetic algorithms (GAs) has largely taken by many researchers, for example, Axelord (1987), Marimon, McGrattan and Sargent (1990), Arifovic (1994, 1995a, 1995b), Arifovic and Eaton (1995), Dawid (1996a, 1996b), Birchenhall (1995), Birchenhall et al (1997), Bullard and Duffy (1997), Riechmann (1998, 1999), and Vriend (1998).We study a simple overlapping generation economy as an adaptive learning system. There are two populations co-existing in each period of time. A significant departure to representative agent in economic modelling is a release of hypothesis of perfect foresight or rational expectation. As a result, individual agents in the economy have heterogeneous beliefs concerning realisation of possible outcomes. With the existence of heterogeneity in the economy, actual outcome may or may not identical to any particular individual agent' expectation ex-ante. When the actual outcome feeds back to individual agents' beliefs, individual agents learn to correctly update their own beliefs. The learning is via a so-called genetic algorithm process.The framework proposed here is identical to the one considered in Bullard and Duffy (1998). Two prime questions raised are firstly the explanation of appearance of convergence to the Pareto superior equilibrium, and secondly how robust its convergence is to the changes in parameter value of the model, in particular, there are distinctions in two respects: within one learning scheme and between learning schemes. Moreover, we will look at what Vriend (1998) addressed a so-called "spite-effect"; in an economic setting, the effect of the economic forces might lead to significantly different results when applied computational tools between individual and social learning.We investigate performances of Holland's standard GA (SGA), Arifovic's augmented GA (AGA), and Birchenhall's selective transfer GA (STGA). Compared to modern artificial adaptive techniques, Maynard Smith's replicator model in its simple formulation highlighting the role of selection has been successfully applied in economics. In this study, the results from the replicator dynamics are compared to results of the related GAs above. In addition, we modify these learning algorithms. The results are compared to the results of their originals. Our work suggests that the stability of the Pareto superior equilibrium of the model is robust i.e. independent of the precise algorithm used. Finally, a further work for the study is necessary, even if it is a little speculative. While the learning schemes are not derived from an explicit behavioural model, one learning algorithm can be only described as a specific form of learning process. In other words, we ask which learning scheme agent will use population-wide when agent has many learning schemes available.

Suggested Citation

  • Jie-Shin Lin & Chris Birchenhall, 2000. "Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models," Computing in Economics and Finance 2000 327, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:327
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef00/papers/paper327.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, December.
    2. Blume, Lawrence E. & Easley, David, 1982. "Learning to be rational," Journal of Economic Theory, Elsevier, vol. 26(2), pages 340-351, April.
    3. Cooper,Russell, 1999. "Coordination Games," Cambridge Books, Cambridge University Press, number 9780521578967, January.
    4. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    5. Arifovic, Jasmina & Eaton, Curtis, 1995. "Coordination via Genetic Learning," Computational Economics, Springer;Society for Computational Economics, vol. 8(3), pages 181-203, August.
    6. Riechmann, Thomas, 1998. "Genetic Algorithms and Economic Evolution," Hannover Economic Papers (HEP) dp-219, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    7. Bullard, James & Duffy, John, 1999. "Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 13(1), pages 41-60, February.
    8. Arifovic, Jasmina, 1995. "Genetic algorithms and inflationary economies," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 219-243, August.
    9. Sacco, Pier Luigi, 1994. "Can People Learn Rational Expectations? An 'Ecological' Approach," Journal of Evolutionary Economics, Springer, vol. 4(1), pages 35-43, March.
    10. Sent,Esther-Mirjam, 2006. "The Evolving Rationality of Rational Expectations," Cambridge Books, Cambridge University Press, number 9780521027717.
    11. Herbert Dawid, 1996. "Learning of cycles and sunspot equilibria by Genetic Algorithms (*)," Journal of Evolutionary Economics, Springer, vol. 6(4), pages 361-373.
    12. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    13. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    14. Marimon, Ramon & McGrattan, Ellen & Sargent, Thomas J., 1990. "Money as a medium of exchange in an economy with artificially intelligent agents," Journal of Economic Dynamics and Control, Elsevier, vol. 14(2), pages 329-373, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    2. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    3. Shu-Heng Chen & Chia-Hsuan Yeh, 1999. "Evolving Traders and the Faculty of the Business School: A New Architecture of the Artificial Stock Market," Computing in Economics and Finance 1999 613, Society for Computational Economics.
    4. Jie-Shin Lin, 2005. "Learning in a Network Economy," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 59-74, February.
    5. Dawid, Herbert, 1999. "On the convergence of genetic learning in a double auction market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1545-1567, September.
    6. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    7. Bullard, James & Duffy, John, 1999. "Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 13(1), pages 41-60, February.
    8. Marco Casari, 2002. "Can genetic algorithms explain experimental anomalies? An application to common property resources," UFAE and IAE Working Papers 542.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    9. Arifovic, Jasmina & Karaivanov, Alexander, 2010. "Learning by doing vs. learning from others in a principal-agent model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1967-1992, October.
    10. Lensberg, Terje & Schenk-Hoppé, Klaus Reiner, 2021. "Cold play: Learning across bimatrix games," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 419-441.
    11. Floortje Alkemade & Han Poutré & Hans Amman, 2006. "Robust Evolutionary Algorithm Design for Socio-economic Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 355-370, November.
    12. Georges, Christophre, 2006. "Learning with misspecification in an artificial currency market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(1), pages 70-84, May.
    13. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    14. Bullard, James & Duffy, John, 1998. "A model of learning and emulation with artificial adaptive agents," Journal of Economic Dynamics and Control, Elsevier, vol. 22(2), pages 179-207, February.
    15. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    16. Edmund Chattoe-Brown, 1998. "Just How (Un)realistic Are Evolutionary Algorithms As Representations of Social Processes?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 1(3), pages 1-2.
    17. Michael K. Maschek, 2015. "Particle Swarm Optimization in Agent‐Based Economic Simulations of the Cournot Market Model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(2), pages 133-152, April.
    18. Makarewicz, Tomasz, 2021. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 626-673.
    19. Casari, Marco, 2008. "Markets in equilibrium with firms out of equilibrium: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 65(2), pages 261-276, February.
    20. Hommes, Cars & Lux, Thomas, 2013. "Individual Expectations And Aggregate Behavior In Learning-To-Forecast Experiments," Macroeconomic Dynamics, Cambridge University Press, vol. 17(2), pages 373-401, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.