IDEAS home Printed from
   My bibliography  Save this paper

Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models


  • Jie-Shin Lin

    (University of Manchester)

  • Chris Birchenhall


The last years have been seen an extraordinary flourishing of works studying learning and adaptive behaviour in diverse fields. Following the fashion of computer innovation, there has been a growing interest in application to economic models of learning procedure developed in evolutionary computation tools such as genetic algorithms. Accordingly then, the use of computer simulation based on the related genetic algorithms (GAs) has largely taken by many researchers, for example, Axelord (1987), Marimon, McGrattan and Sargent (1990), Arifovic (1994, 1995a, 1995b), Arifovic and Eaton (1995), Dawid (1996a, 1996b), Birchenhall (1995), Birchenhall et al (1997), Bullard and Duffy (1997), Riechmann (1998, 1999), and Vriend (1998).We study a simple overlapping generation economy as an adaptive learning system. There are two populations co-existing in each period of time. A significant departure to representative agent in economic modelling is a release of hypothesis of perfect foresight or rational expectation. As a result, individual agents in the economy have heterogeneous beliefs concerning realisation of possible outcomes. With the existence of heterogeneity in the economy, actual outcome may or may not identical to any particular individual agent' expectation ex-ante. When the actual outcome feeds back to individual agents' beliefs, individual agents learn to correctly update their own beliefs. The learning is via a so-called genetic algorithm process.The framework proposed here is identical to the one considered in Bullard and Duffy (1998). Two prime questions raised are firstly the explanation of appearance of convergence to the Pareto superior equilibrium, and secondly how robust its convergence is to the changes in parameter value of the model, in particular, there are distinctions in two respects: within one learning scheme and between learning schemes. Moreover, we will look at what Vriend (1998) addressed a so-called "spite-effect"; in an economic setting, the effect of the economic forces might lead to significantly different results when applied computational tools between individual and social learning.We investigate performances of Holland's standard GA (SGA), Arifovic's augmented GA (AGA), and Birchenhall's selective transfer GA (STGA). Compared to modern artificial adaptive techniques, Maynard Smith's replicator model in its simple formulation highlighting the role of selection has been successfully applied in economics. In this study, the results from the replicator dynamics are compared to results of the related GAs above. In addition, we modify these learning algorithms. The results are compared to the results of their originals. Our work suggests that the stability of the Pareto superior equilibrium of the model is robust i.e. independent of the precise algorithm used. Finally, a further work for the study is necessary, even if it is a little speculative. While the learning schemes are not derived from an explicit behavioural model, one learning algorithm can be only described as a specific form of learning process. In other words, we ask which learning scheme agent will use population-wide when agent has many learning schemes available.

Suggested Citation

  • Jie-Shin Lin & Chris Birchenhall, 2000. "Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models," Computing in Economics and Finance 2000 327, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:327

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, January.
    2. Blume, Lawrence E. & Easley, David, 1982. "Learning to be rational," Journal of Economic Theory, Elsevier, vol. 26(2), pages 340-351, April.
    3. Cooper,Russell, 1999. "Coordination Games," Cambridge Books, Cambridge University Press, number 9780521570176, March.
    4. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    5. Arifovic, Jasmina & Eaton, Curtis, 1995. "Coordination via Genetic Learning," Computational Economics, Springer;Society for Computational Economics, vol. 8(3), pages 181-203, August.
    6. Bullard, James & Duffy, John, 1999. "Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 13(1), pages 41-60, February.
    7. Arifovic, Jasmina, 1995. "Genetic algorithms and inflationary economies," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 219-243, August.
    8. Sacco, Pier Luigi, 1994. "Can People Learn Rational Expectations? An 'Ecological' Approach," Journal of Evolutionary Economics, Springer, vol. 4(1), pages 35-43, March.
    9. Sent,Esther-Mirjam, 2006. "The Evolving Rationality of Rational Expectations," Cambridge Books, Cambridge University Press, number 9780521027717, March.
    10. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    11. Marimon, Ramon & McGrattan, Ellen & Sargent, Thomas J., 1990. "Money as a medium of exchange in an economy with artificially intelligent agents," Journal of Economic Dynamics and Control, Elsevier, vol. 14(2), pages 329-373, May.
    12. Riechmann, Thomas, 1998. "Genetic Algorithms and Economic Evolution," Hannover Economic Papers (HEP) dp-219, Leibniz Universit├Ąt Hannover, Wirtschaftswissenschaftliche Fakult├Ąt.
    13. Cooper,Russell, 1999. "Coordination Games," Cambridge Books, Cambridge University Press, number 9780521578967, March.
    14. Selten, Reinhard, 1991. "Evolution, learning, and economic behavior," Games and Economic Behavior, Elsevier, vol. 3(1), pages 3-24, February.
    15. Herbert Dawid, 1996. "Learning of cycles and sunspot equilibria by Genetic Algorithms (*)," Journal of Evolutionary Economics, Springer, vol. 6(4), pages 361-373.
    16. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:327. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.