IDEAS home Printed from https://ideas.repec.org/p/rtr/wpaper/0189.html
   My bibliography  Save this paper

A suggestion for a multivariate concordance coefficient

Author

Listed:
  • Silvia Terzi
  • Luca Moroni

Abstract

In the present paper we will introduce a coecient of multivariate association i.e. association in a d-variate vector of observations x = (x1; : : : ; xd), where d 2 and where each xj is itself a vector of n observations. We order the observations, divide them in slices and count how many times one observation in the r-th slice of any of the d distributions also belongs to the r-th slice of any of the others. The greater the number of overlaps between the units belonging to corresponding slices, the greater the concordance between the d distributions. This is the simple and intuitive idea our multivariate association coecient stems from. It is in fact a multidimensional concordance coecient since it assumes comonotonicity for all variables.

Suggested Citation

  • Silvia Terzi & Luca Moroni, 2014. "A suggestion for a multivariate concordance coefficient," Departmental Working Papers of Economics - University 'Roma Tre' 0189, Department of Economics - University Roma Tre.
  • Handle: RePEc:rtr:wpaper:0189
    as

    Download full text from publisher

    File URL: http://dipeco.uniroma3.it/db/docs/wp%20189.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koen DECANCQ, 2010. "Copula-based orderings of multivariate dependence," Working Papers of Department of Economics, Leuven ces10.08, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    2. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    3. M. Taylor, 2007. "Multivariate measures of concordance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 789-806, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    2. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    3. Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    4. Fuchs Sebastian, 2016. "A Biconvex Form for Copulas," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-13, February.
    5. Ying Zhang & Chuancun Yin, 2014. "A new multivariate dependence measure based on comonotonicity," Papers 1410.7845, arXiv.org.
    6. Naoyuki Ishimura & Naohiro Yoshida, 2017. "On a measure of dependence for extreme value copulas," EcoMod2017 10311, EcoMod.
    7. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    8. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    9. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    10. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    11. Silvia Terzi & Luca Moroni, 2022. "Local Concordance and Some Applications," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 457-470, June.
    12. Antonio Dalessandro & Gareth W. Peters, 2020. "Efficient and Accurate Evaluation Methods for Concordance Measures via Functional Tensor Characterizations of Copulas," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1089-1124, September.
    13. Martynas Manstavičius, 2022. "Diversity of Bivariate Concordance Measures," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    14. Edwards, H.H. & Taylor, M.D., 2009. "Characterizations of degree one bivariate measures of concordance," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1777-1791, September.
    15. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    16. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    17. Edoardo Berton & Lorenzo Mercuri, 2021. "An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model," Papers 2112.11968, arXiv.org, revised Feb 2023.
    18. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    19. Liebscher Eckhard, 2017. "Copula-Based Dependence Measures For Piecewise Monotonicity," Dependence Modeling, De Gruyter, vol. 5(1), pages 198-220, August.
    20. Okimoto, Tatsuyoshi, 2014. "Asymmetric increasing trends in dependence in international equity markets," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 219-232.

    More about this item

    Keywords

    Copula; Concordance; Local concordance; Measures of multivariate association;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtr:wpaper:0189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Telephone for information (email available below). General contact details of provider: https://edirc.repec.org/data/dero3it.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.