IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Partial identification, distributional preferences, and the welfare ranking of policies

Listed author(s):
  • Kasy, Maximilian

Many methodological debates in microeconometrics are driven by the tension between ``what we can get'' (identification) and ``what we want'' (parameters of interest). This paper proposes to consider models of policy choice which allow for a joint formal discussion of both issues. We consider a non-standard empirical object of interest, the ranking of counterfactual policies. This paper connects the literatures on partial identification and on ambiguity, where partially identified policy rankings are formally analogous to choice under Knightian uncertainty. Partial identification of conditional average treatment effects maps into a partial ordering of treatment assignment policies in terms of social welfare. This paper gives geometric characterizations of the identified partial ordering of policies, and derives conditions for restricted policy sets to be completely ordered or completely unordered. Such conditions map sets of feasible policies into requirements on data that allow to rank these policies. Generalizing to non-linear objective functions, it is then shown that policy effects are partially identified if and only if the policy objective is a robust statistic in the sense of having a bounded influence function. Furthermore, rankings derived from a linearized version of the objective function give correct rankings in a neighborhood of a status quo policy, and are easy to calculate in practice. The theoretical results of this paper are applied to data from the ``project STAR'' experiment, in which children were randomly assigned to classes of different sizes. This application illustrates the dependence of identifiability of the policy ranking on identifying assumptions, the feasible policy set, and distributional preferences.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Harvard University OpenScholar in its series Working Paper with number 32846.

in new window

Date of creation:
Handle: RePEc:qsh:wpaper:32846
Contact details of provider: Postal:
1737 Cambridge Street, Cambridge, MA 02138

Phone: 617-496-2450
Fax: 617-496-5149
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qsh:wpaper:32846. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Brandon)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.