IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1390.html
   My bibliography  Save this paper

Adaptive Inference In Heteroskedastic Fractional Time Series Models

Author

Listed:
  • Giuseppe Cavaliere

    (University of Bologna)

  • Morten Ø. Nielsen

    () (Queen's University and CREATES)

  • A.M. Robert Taylor

    (University of Essex)

Abstract

We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroskedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in such cases, unconditional heteroskedasticity inflates its variance matrix by a scalar quantity, lambda>1, thereby inducing a loss in efficiency relative to the unconditionally homoskedastic case, lambda=1. We propose an adaptive version of the CSS estimator, based on non-parametric kernel-based estimation of the unconditional variance process. This eliminates the factor lambda from the variance matrix, thereby delivering the same asymptotic efficiency as that attained by the standard CSS estimator in the unconditionally homoskedastic case and, hence, asymptotic efficiency under Gaussianity. The asymptotic variance matrices of both the standard and adaptive CSS estimators depend on any conditional heteroskedasticity and/or weak parametric autocorrelation present in the shocks. Consequently, asymptotically pivotal inference can be achieved through the development of confidence regions or hypothesis tests using either heteroskedasticity robust standard errors and/or a wild bootstrap. Monte Carlo simulations and empirical applications are included to illustrate the practical usefulness of the methods proposed.

Suggested Citation

  • Giuseppe Cavaliere & Morten Ø. Nielsen & A.M. Robert Taylor, 2019. "Adaptive Inference In Heteroskedastic Fractional Time Series Models," Working Paper 1390, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1390
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/wpaper/qed_wp_1390.pdf
    File Function: First version 2019
    Download Restriction: no

    More about this item

    Keywords

    adaptive estimation; conditional sum-of-squares; fractional integration; heteroskedasticity; quasi-maximum likelihood estimation; wild bootstrap;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1390. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock). General contact details of provider: http://edirc.repec.org/data/qedquca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.