IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Topology and invertible maps

  • Chichilnisky, Graciela

I study connected manifolds and prove that a proper map f: M -> M is globally invertible when it has a nonvanishing Jacobian and the fundamental group pi (M) is finite. This includes finite and infinite dimensional manifolds. Reciprocally, if pi (M) is infinite, there exist locally invertible maps that are not globally invertible. The results provide simple conditions for unique solutions to systems of simultaneous equations and for unique market equilibrium. Under standard desirability conditions, it is shown that a competitive market has a unique equilibrium if its reduced excess demand has a nonvanishing Jacobian. The applications are sharpest in markets with limited arbitrage and strictly convex preferences: a nonvanishing Jacobian ensures the existence of a unique equilibrium in finite or infinite dimensions, even when the excess demand is not defined for some prices, and with or without short sales.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/8811/1/MPRA_paper_8811.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 8811.

as
in new window

Length:
Date of creation: 15 Sep 1997
Date of revision:
Handle: RePEc:pra:mprapa:8811
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Chichilnisky, Graciela & Zhou, Yuqing, 1998. "Smooth infinite economies," Journal of Mathematical Economics, Elsevier, vol. 29(1), pages 27-42, January.
  2. Dierker, Egbert, 1972. "Two Remarks on the Number of Equilibria of an Economy," Econometrica, Econometric Society, vol. 40(5), pages 951-53, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:8811. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.