IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/77767.html

A rough set approach for the discovery of classification rules in interval-valued information systems

Author

Listed:
  • Leung, Yee
  • Fischer, Manfred M.
  • Wu, Wei-Zhi
  • Mi, Ju-Sheng

Abstract

A novel rough set approach is proposed in this paper to discover classification rules through a process of knowledge induction which selects optimal decision rules with a minimal set of features necessary and sufficient for classification of real-valued data. A rough set knowledge discovery framework is formulated for the analysis of interval-valued information systems converted from real-valued raw decision tables. The optimal feature selection method for information systems with interval-valued features obtains all classification rules hidden in a system through a knowledge induction process. Numerical examples are employed to substantiate the conceptual arguments.

Suggested Citation

  • Leung, Yee & Fischer, Manfred M. & Wu, Wei-Zhi & Mi, Ju-Sheng, 2008. "A rough set approach for the discovery of classification rules in interval-valued information systems," MPRA Paper 77767, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:77767
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/77767/1/MPRA_paper_77767.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    2. Leung, Yee & Wu, Wei-Zhi & Zhang, Wen-Xiu, 2006. "Knowledge acquisition in incomplete information systems: A rough set approach," European Journal of Operational Research, Elsevier, vol. 168(1), pages 164-180, January.
    3. P. J. Lingras & Y. Y. Yao, 1998. "Data mining using extensions of the rough set model," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(5), pages 415-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamal Uddin & Rozaida Ghazali & Jemal H. Abawajy & Habib Shah & Noor Aida Husaini & Asim Zeb, 2022. "Rough set based information theoretic approach for clustering uncertain categorical data," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-23, May.
    2. Yi-Shian Lee & Lee-Ing Tong, 2012. "Predicting High or Low Transfer Efficiency of Photovoltaic Systems Using a Novel Hybrid Methodology Combining Rough Set Theory, Data Envelopment Analysis and Genetic Programming," Energies, MDPI, vol. 5(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leung, Yee & Wu, Wei-Zhi & Zhang, Wen-Xiu, 2006. "Knowledge acquisition in incomplete information systems: A rough set approach," European Journal of Operational Research, Elsevier, vol. 168(1), pages 164-180, January.
    2. Wen-Min Lu & Qian Long Kweh & Chung-Wei Wang, 2021. "Integration and application of rough sets and data envelopment analysis for assessments of the investment trusts industry," Annals of Operations Research, Springer, vol. 296(1), pages 163-194, January.
    3. Pang, Jifang & Liang, Jiye, 2012. "Evaluation of the results of multi-attribute group decision-making with linguistic information," Omega, Elsevier, vol. 40(3), pages 294-301.
    4. Eduardo Fernández & José Rui Figueira & Jorge Navarro, 2023. "A theoretical look at ordinal classification methods based on comparing actions with limiting boundaries between adjacent classes," Annals of Operations Research, Springer, vol. 325(2), pages 819-843, June.
    5. Doumpos, M. & Marinakis, Y. & Marinaki, M. & Zopounidis, C., 2009. "An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method," European Journal of Operational Research, Elsevier, vol. 199(2), pages 496-505, December.
    6. Skorupski, Jacek & Uchroński, Piotr, 2017. "A fuzzy model for evaluating metal detection equipment at airport security screening checkpoints," International Journal of Critical Infrastructure Protection, Elsevier, vol. 16(C), pages 39-48.
    7. repec:dau:papers:123456789/4080 is not listed on IDEAS
    8. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    9. Fernandez, Eduardo & Navarro, Jorge & Bernal, Sergio, 2010. "Handling multicriteria preferences in cluster analysis," European Journal of Operational Research, Elsevier, vol. 202(3), pages 819-827, May.
    10. Pawel Lezanski & Maria Pilacinska, 2018. "The dominance-based rough set approach to cylindrical plunge grinding process diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 989-1004, June.
    11. Tsoukias, Alexis, 2008. "From decision theory to decision aiding methodology," European Journal of Operational Research, Elsevier, vol. 187(1), pages 138-161, May.
    12. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    13. García Cáceres, Rafael Guillermo & Aráoz Durand, Julián Arturo & Gómez, Fernando Palacios, 2009. "Integral analysis method - IAM," European Journal of Operational Research, Elsevier, vol. 192(3), pages 891-903, February.
    14. Bouyssou, Denis & Pirlot, Marc, 2009. "An axiomatic analysis of concordance-discordance relations," European Journal of Operational Research, Elsevier, vol. 199(2), pages 468-477, December.
    15. Azam, Nouman & Zhang, Yan & Yao, JingTao, 2017. "Evaluation functions and decision conditions of three-way decisions with game-theoretic rough sets," European Journal of Operational Research, Elsevier, vol. 261(2), pages 704-714.
    16. Nikolaos Argyris & Alec Morton & José Rui Figueira, 2014. "CUT: A Multicriteria Approach for Concavifiable Preferences," Operations Research, INFORMS, vol. 62(3), pages 633-642, June.
    17. Fernández, Eduardo & Figueira, José Rui & Navarro, Jorge & Solares, Efrain, 2022. "Handling imperfect information in multiple criteria decision-making through a comprehensive interval outranking approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    18. Beynon, Malcolm J., 2005. "A novel technique of object ranking and classification under ignorance: An application to the corporate failure risk problem," European Journal of Operational Research, Elsevier, vol. 167(2), pages 493-517, December.
    19. Sung-Shun Weng & Yang Liu & Juan Dai & Yen-Ching Chuang, 2020. "A Novel Improvement Strategy of Competency for Education for Sustainable Development (ESD) of University Teachers Based on Data Mining," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    20. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    21. Hu, Qiwei & Chakhar, Salem & Siraj, Sajid & Labib, Ashraf, 2017. "Spare parts classification in industrial manufacturing using the dominance-based rough set approach," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1136-1163.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:77767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.