IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/26797.html
   My bibliography  Save this paper

A Non-parametric Approach to Incorporating Incomplete Workouts Into Loss Given Default Estimates

Author

Listed:
  • Rapisarda, Grazia
  • Echeverry, David

Abstract

When estimating Loss Given Default (LGD) parameters using a workout approach, i.e. discounting cash flows over the workout period, the problem arises of how to take into account partial recoveries from incomplete work-outs. The simplest approach would see LGD based on complete recovery profiles only. Whilst simple, this approach may lead to data selection bias, which may be at the basis of regulatory guidance requiring the assessment of the relevance of incomplete workouts to LGD estimation. Despite its importance, few academic contributions have covered this topic. We enhance this literature by developing a non-parametric estimator that -under certain distributional assumptions on the recovery profiles- aggregates complete and incomplete workout data to produce unbiased and more efficient estimates of mean LGD than those obtained from the estimator based on resolved cases only. Our estimator is appropriate in LGD estimation for wholesale portfolios, where the exposure-weighted LGD estimators available in the literature would not be applicable under Basel II regulatory guidance.

Suggested Citation

  • Rapisarda, Grazia & Echeverry, David, 2010. "A Non-parametric Approach to Incorporating Incomplete Workouts Into Loss Given Default Estimates," MPRA Paper 26797, University Library of Munich, Germany, revised 16 Nov 2010.
  • Handle: RePEc:pra:mprapa:26797
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/26797/1/MPRA_paper_26797.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    2. Fuller, Russell J. & Kim, Sang-Hoon, 1980. "Inter-Temporal Correlation of Cash Flows and the Risk of Multi-Period Investment Projects," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(5), pages 1149-1162, December.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    4. Altman, Edward I, 1989. " Measuring Corporate Bond Mortality and Performance," Journal of Finance, American Finance Association, vol. 44(4), pages 909-922, September.
    5. Dermine, J. & de Carvalho, C. Neto, 2006. "Bank loan losses-given-default: A case study," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1219-1243, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    2. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    3. Zheng, Yanting & Yang, Jingping & Huang, Jianhua Z., 2011. "Approximation of bivariate copulas by patched bivariate Fréchet copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 246-256, March.
    4. Antonella Campana, 2007. "On Tail Value-at-Risk for sums of non-independent random variables with a generalized Pareto distribution," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 169-180, December.
    5. Huang, H. & Milevsky, M. A. & Wang, J., 2004. "Ruined moments in your life: how good are the approximations?," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 421-447, June.
    6. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    7. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    8. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    9. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jun 2021.
    10. Wenjun Jiang & Jiandong Ren & Ričardas Zitikis, 2017. "Optimal Reinsurance Policies under the VaR Risk Measure When the Interests of Both the Cedent and the Reinsurer Are Taken into Account," Risks, MDPI, Open Access Journal, vol. 5(1), pages 1-22, February.
    11. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    12. Manesh, Sirous Fathi & Khaledi, Baha-Eldin & Dhaene, Jan, 2016. "Optimal allocation of policy deductibles for exchangeable risks," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 87-92.
    13. Sinem Bas & Philippe Bich & Alain Chateauneuf, 2021. "Multidimensional inequalities and generalized quantile functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 375-409, March.
    14. He, Junnan & Tang, Qihe & Zhang, Huan, 2016. "Risk reducers in convex order," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 80-88.
    15. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    16. Denuit, Michel & Dhaene, Jan, 2012. "Convex order and comonotonic conditional mean risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 265-270.
    17. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    18. Alexander Shapiro, 2013. "On Kusuoka Representation of Law Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 142-152, February.
    19. Bahareh Afhami & Mohsen Rezapour & Mohsen Madadi & Vahed Maroufy, 2021. "Dynamic investment portfolio optimization using a Multivariate Merton Model with Correlated Jump Risk," Papers 2104.11594, arXiv.org.
    20. Daniël Linders & Jan Dhaene & Wim Schoutens, 2015. "Option prices and model-free measurement of implied herd behavior in stock markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-35.

    More about this item

    Keywords

    Credit risk; bank loans; loss-given-default; LGD; incomplete observations; mortality curves;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:26797. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.