IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/17443.html
   My bibliography  Save this paper

Improving Modeling of Extreme Events using Generalized Extreme Value Distribution or Generalized Pareto Distribution with Mixing Unconditional Disturbances

Author

Listed:
  • Suarez, R

Abstract

In this paper an alternative non-parametric historical simulation approach, the Mixing Unconditional Disturbances model with constant volatility, where price paths are generated by reshuffling disturbances for S&P 500 Index returns over the period 1950 - 1998, is used to estimate a Generalized Extreme Value Distribution and a Generalized Pareto Distribution. An ordinary back-testing for period 1999 - 2008 was made to verify this technique, providing higher accuracy returns level under upper bound of the confidence interval for the Block Maxima and the Peak-Over Threshold approaches with Mixing Unconditional Disturbances. This method can be an effective tool to create value for stress-testing valuation.

Suggested Citation

  • Suarez, R, 2001. "Improving Modeling of Extreme Events using Generalized Extreme Value Distribution or Generalized Pareto Distribution with Mixing Unconditional Disturbances," MPRA Paper 17443, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:17443
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/17443/1/MPRA_paper_17443.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Center for Financial Institutions Working Papers 98-10, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Younes Bensalah, 2000. "Steps in Applying Extreme Value Theory to Finance: A Review," Staff Working Papers 00-20, Bank of Canada.
    3. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    4. Tompkins, Robert G. & D'Ecclesia, Rita L., 2006. "Unconditional return disturbances: A non-parametric simulation approach," Journal of Banking & Finance, Elsevier, vol. 30(1), pages 287-314, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Extreme Value; Block Maxima; Peak Over Threshold; Mixing Unconditional Disturbances;

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:17443. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.