IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/126730.html
   My bibliography  Save this paper

Nonparametric Identification of Spatial Treatment Effect Boundaries: Evidence from Bank Branch Consolidation

Author

Listed:
  • Kikuchi, Tatsuru

Abstract

I develop a nonparametric framework for identifying spatial boundaries of treatment effects without imposing parametric functional form restrictions. The method employs local linear regression with data-driven bandwidth selection to flexibly estimate spatial decay patterns and detect treatment effect boundaries. Monte Carlo simulations demonstrate that the nonparametric approach exhibits lower bias and correctly identifies the absence of boundaries when none exist, unlike parametric methods that may impose spurious spatial patterns. I apply this framework to bank branch openings during 2015--2020, matching 5,743 new branches to 5.9 million mortgage applications across 14,209 census tracts. The analysis reveals that branch proximity significantly affects loan application volume (8.5\% decline per 10 miles) but not approval rates, consistent with branches stimulating demand through local presence while credit decisions remain centralized. Examining branch survival during the digital transformation era (2010--2023), I find a non-monotonic relationship with area income: high-income areas experience more closures despite conventional wisdom. This counterintuitive pattern reflects strategic consolidation of redundant branches in over-banked wealthy urban areas rather than discrimination against poor neighborhoods. Controlling for branch density, urbanization, and competition, the direct income effect diminishes substantially, with branch density emerging as the primary determinant of survival. These findings demonstrate the necessity of flexible nonparametric methods for detecting complex spatial patterns that parametric models would miss, and challenge simplistic narratives about banking deserts by revealing the organizational complexity underlying spatial consolidation decisions.

Suggested Citation

  • Kikuchi, Tatsuru, 2025. "Nonparametric Identification of Spatial Treatment Effect Boundaries: Evidence from Bank Branch Consolidation," MPRA Paper 126730, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:126730
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/126730/1/MPRA_paper_126730.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Robinson, 2011. "Asymptotic theory for nonparametric regression with spatial data," CeMMAP working papers CWP11/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Mitchell A. Petersen & Raghuram G. Rajan, 2002. "Does Distance Still Matter? The Information Revolution in Small Business Lending," Journal of Finance, American Finance Association, vol. 57(6), pages 2533-2570, December.
    3. Ozgur Emre Ergungor, 2010. "Bank Branch Presence and Access to Credit in Low‐ to Moderate‐Income Neighborhoods," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(7), pages 1321-1349, October.
    4. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    5. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    6. Hoai-Luu Q. Nguyen, 2019. "Are Credit Markets Still Local? Evidence from Bank Branch Closings," American Economic Journal: Applied Economics, American Economic Association, vol. 11(1), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatsuru Kikuchi, 2025. "Nonparametric Identification of Spatial Treatment Effect Boundaries: Evidence from Bank Branch Consolidation," Papers 2510.13148, arXiv.org, revised Oct 2025.
    2. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    3. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    4. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    5. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    6. Sandhya Garg & Samarth Gupta & Sushanta Mallick, 2023. "Does Social Identity Constrain Rural Entrepreneurship? The Role of Financial Inclusion," IEG Working Papers 460, Institute of Economic Growth.
    7. Wang, Ye & Wu, Shuang, 2024. "Impact of mobile banking on small business lending after bank branch closures," Journal of Corporate Finance, Elsevier, vol. 87(C).
    8. Lee, Jungyoon & Robinson, Peter M., 2013. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 58188, London School of Economics and Political Science, LSE Library.
    9. Lee, Junyong & Lee, Kyounghun & Oh, Frederick Dongchuhl, 2024. "Religion and branch banking," Journal of Financial Intermediation, Elsevier, vol. 60(C).
    10. Robinson, Peter M. & Thawornkaiwong, Supachoke, 2012. "Statistical inference on regression with spatial dependence," Journal of Econometrics, Elsevier, vol. 167(2), pages 521-542.
    11. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Journal of Econometrics, Elsevier, vol. 223(1), pages 125-160.
    12. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    13. Abhimanyu Gupta & Javier Hidalgo, 2020. "Nonparametric prediction with spatial data," Papers 2008.04269, arXiv.org, revised Nov 2021.
    14. Joan Calzada & Xavier Fageda & Fernando Martínez-Santos, 2023. "Mergers and bank branches: two decades of evidence from the USA," Empirical Economics, Springer, vol. 64(5), pages 2411-2447, May.
    15. Sandhya Garg & Samarth Gupta & Sushanta Mallick, 2025. "Financial Access and Entrepreneurship by Gender: Evidence from Rural India," Small Business Economics, Springer, vol. 64(2), pages 729-754, February.
    16. Jungyoon Lee & Peter M Robinson, 2013. "Series Estimation under Cross-sectional Dependence," STICERD - Econometrics Paper Series 570, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Eduardo A. Souza-Rodrigues, 2016. "Nonparametric Regression with Common Shocks," Econometrics, MDPI, vol. 4(3), pages 1-17, September.
    18. Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
    19. Zhenhao Gong & Min Seong Kim, 2024. "Improved inference for interactive fixed effects model under cross-sectional dependence," Empirical Economics, Springer, vol. 67(2), pages 727-760, August.
    20. J. Hidalgo & M. Schafgans, 2020. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Papers 2006.14409, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:126730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.