IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/rckzj.html
   My bibliography  Save this paper

Navigating the methodological landscape in spatial analysis: a comment on ‘A Route Map for Successful Applications of Geographically-Weighted Regression’

Author

Listed:
  • Oshan, Taylor M.

Abstract

The development of ‘route maps’ for spatial analytical methods is a pursuit with important ramifications. Comber et al. (2022) propose a route map to guide applications of geographically weighted regression (GWR) consisting of a 3-step primary pathway and a series of secondary arterials. This comment first highlights some concerns about the underlying ‘map’ (i.e., experimental setup and assumptions) and then with the proposed ‘route’ (i.e., core decisions and evaluation criteria). It closes by suggesting a more general focus on identifying modeling issues with the highest impact and facilitating consensus-building, which could improve the future production of route maps for navigating the methodological landscape in spatial analysis.

Suggested Citation

  • Oshan, Taylor M., 2022. "Navigating the methodological landscape in spatial analysis: a comment on ‘A Route Map for Successful Applications of Geographically-Weighted Regression’," OSF Preprints rckzj, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:rckzj
    DOI: 10.31219/osf.io/rckzj
    as

    Download full text from publisher

    File URL: https://osf.io/download/6295586fddbe492ab5a217ca/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/rckzj?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oshan, Taylor M. & Smith, Jordan & Fotheringham, Alexander Stewart, 2020. "Targeting the spatial context of obesity determinants via multiscale geographically weighted regression," OSF Preprints u7j29, Center for Open Science.
    2. Ziqi Li & A. Stewart Fotheringham & Taylor M. Oshan & Levi John Wolf, 2020. "Measuring Bandwidth Uncertainty in Multiscale Geographically Weighted Regression Using Akaike Weights," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 110(5), pages 1500-1520, September.
    3. David Wheeler & Michael Tiefelsdorf, 2005. "Multicollinearity and correlation among local regression coefficients in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 7(2), pages 161-187, June.
    4. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoehun Ha & Wei Tu, 2018. "An Ecological Study on the Spatially Varying Relationship between County-Level Suicide Rates and Altitude in the United States," IJERPH, MDPI, vol. 15(4), pages 1-16, April.
    2. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    3. Taylor M. Oshan & Levi J. Wolf & Mehak Sachdeva & Sarah Bardin & A. Stewart Fotheringham, 2022. "A scoping review on the multiplicity of scale in spatial analysis," Journal of Geographical Systems, Springer, vol. 24(3), pages 293-324, July.
    4. Christos Agiakloglou & Cleon Tsimbos & Apostolos Tsimpanos, 2019. "Evidence of spurious results along with spatially autocorrelated errors in the context of geographically weighted regression for two independent SAR(1) processes," Empirical Economics, Springer, vol. 57(5), pages 1613-1631, November.
    5. Paul Harris & Bruno Lanfranco & Binbin Lu & Alexis Comber, 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    6. Qianyao Li & Junwu Wang & Judith Callanan & Binbin Lu & Zeng Guo, 2021. "The spatial varying relationship between services of the train network and residential property values in Melbourne, Australia," Urban Studies, Urban Studies Journal Limited, vol. 58(2), pages 335-354, February.
    7. Sisman, S. & Aydinoglu, A.C., 2022. "A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul," Land Use Policy, Elsevier, vol. 119(C).
    8. Chacon-Hurtado, Davis & Kumar, Indraneel & Gkritza, Konstantina & Fricker, Jon D. & Beaulieu, Lionel J., 2020. "The role of transportation accessibility in regional economic resilience," Journal of Transport Geography, Elsevier, vol. 84(C).
    9. Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
    10. Cynthia Sin Tian Ho & Mats Wilhelmsson, 2022. "Geographical accessibility to bank branches and its relationship to new firm formation in Sweden via multiscale geographically weighted regression," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 42(2), pages 191-218, August.
    11. Pulugurtha, Srinivas S. & Mathew, Sonu, 2021. "Modeling AADT on local functionally classified roads using land use, road density, and nearest nonlocal road data," Journal of Transport Geography, Elsevier, vol. 93(C).
    12. Chih-Hao Wang & Na Chen, 2021. "A multi-objective optimization approach to balancing economic efficiency and equity in accessibility to multi-use paths," Transportation, Springer, vol. 48(4), pages 1967-1986, August.
    13. Tsimpanos, Apostolos & Tsimbos, Cleon & Kalogirou, Stamatis, 2018. "Assessing spatial variation and heterogeneity of fertility in Greece at local authority level," MPRA Paper 100406, University Library of Munich, Germany.
    14. Diana Gutiérrez Posada & Fernando Rubiera Morollón & Ana Viñuela, 2018. "Ageing Places in an Ageing Country: The Local Dynamics of the Elderly Population in Spain," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(3), pages 332-349, July.
    15. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    16. Daniel Acheampong & Tanya Benford, 2020. "Alternative Treatment Of Contribution In Aid Of Construction: The Impact On Investor-Owned Utility Plant Asset Replacement," Accounting & Taxation, The Institute for Business and Finance Research, vol. 12(1), pages 81-96.
    17. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    18. Kristoffer B. Birkeland & Allan D. D'Silva & Roland Füss & Are Oust, 2021. "The Predictability of House Prices: "Human Against Machine"," International Real Estate Review, Global Social Science Institute, vol. 24(2), pages 139-183.
    19. Hyunwoo Lim & Minyoung Park, 2019. "Modeling the Spatial Dimensions of Warehouse Rent Determinants: A Case Study of Seoul Metropolitan Area, South Korea," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    20. Carla Shoff & Tse-Chuan Yang, 2012. "Spatially varying predictors of teenage birth rates among counties in the United States," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(14), pages 377-418.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:rckzj. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.