IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v27y2025i3d10.1007_s10109-025-00468-1.html
   My bibliography  Save this article

Scale and correlation in multiscale geographically weighted regression (MGWR)

Author

Listed:
  • Wei Kang

    (University of California Riverside)

  • Taylor M. Oshan

    (University of Maryland, College Park)

Abstract

Multiscale geographically weighted regression (MGWR) extends geographically weighted regression (GWR) by allowing process heterogeneity to be modeled at different spatial scales. While MGWR improves parameter estimates compared to GWR, the relationship between spatial scale and correlations within and among covariates—specifically spatial autocorrelation and collinearity—has not been systematically explored. This study investigates these relationships through controlled simulation experiments. Results indicate that spatial autocorrelation and collinearity affect specific model components rather than the entire model. Their impacts are cumulative but remain minimal unless they become very strong. MGWR effectively mitigates local multicollinearity issues by applying varying bandwidths across parameter surfaces. However, high levels of spatial autocorrelation and collinearity can lead to bandwidth underestimation for global processes, potentially producing false local effects. Additionally, strong collinearity may cause bandwidths to be overestimated for some processes, which helps mitigate collinearity but may obscure local effects. These findings suggest that while MGWR offers greater robustness against multicollinearity compared to GWR, bandwidth estimates should be interpreted with caution, as they can be influenced by strong spatial autocorrelation and collinearity. These results have important implications for empirical applications of MGWR.

Suggested Citation

  • Wei Kang & Taylor M. Oshan, 2025. "Scale and correlation in multiscale geographically weighted regression (MGWR)," Journal of Geographical Systems, Springer, vol. 27(3), pages 399-424, July.
  • Handle: RePEc:kap:jgeosy:v:27:y:2025:i:3:d:10.1007_s10109-025-00468-1
    DOI: 10.1007/s10109-025-00468-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-025-00468-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-025-00468-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:27:y:2025:i:3:d:10.1007_s10109-025-00468-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.