IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/p98zv.html

Algorithmic Bot Trading vs. Human Trading: Assessing Retail Trading Implications in Financial Markets

Author

Listed:
  • Munipalle, Pravith

Abstract

Bot trading, or algorithmic trading, has transformed modern financial markets by using advanced technologies like artificial intelligence and machine learning to execute trades with unparalleled speed and efficiency. This paper examines the mechanisms and types of trading bots, their impact on market liquidity, efficiency, and stability, and the ethical and regulatory challenges they pose. Key findings highlight the dual nature of bot trading—enhancing market performance while introducing systemic risks, such as those observed during the 2010 Flash Crash. Emerging technologies like blockchain and predictive analytics, along with advancements in AI, present opportunities for innovation but also underscore the need for robust regulations and ethical design. To provide deeper insights, we conducted an experiment analyzing the performance of different trading bot strategies in simulated market conditions, revealing the potential and pitfalls of these systems under varying scenarios.

Suggested Citation

  • Munipalle, Pravith, 2024. "Algorithmic Bot Trading vs. Human Trading: Assessing Retail Trading Implications in Financial Markets," OSF Preprints p98zv, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:p98zv
    DOI: 10.31219/osf.io/p98zv
    as

    Download full text from publisher

    File URL: https://osf.io/download/6768d2b6ee4e4539fde4c03b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/p98zv?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    2. Yacine Aït-Sahalia & Mehmet Saglam, 2013. "High Frequency Traders: Taking Advantage of Speed," NBER Working Papers 19531, National Bureau of Economic Research, Inc.
    3. Ziyi Xu & Xue Cheng, 2023. "The Effects of High-frequency Anticipatory Trading: Small Informed Trader vs. Round-Tripper," Papers 2304.13985, arXiv.org, revised Feb 2024.
    4. Yun Chen-Shue & Yukun Li & Jiongmin Yong, 2024. "A Limit Order Book Model for High Frequency Trading with Rough Volatility," Papers 2412.16850, arXiv.org.
    5. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    6. Marios Panayides & Barbara Rindi & Ingrid M.Werner, 2017. "Trading Fees and Intermarket Competition," BAFFI CAREFIN Working Papers 1751, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    7. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    8. Zhengqiang Li & Tao Wang & Samuel Drapeau & Xuan Tao, 2024. "Evolution of Chinese futures markets from a high frequency perspective," Economics and Politics, Wiley Blackwell, vol. 36(3), pages 1416-1449, November.
    9. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    10. Matthew Zook & Michael H Grote, 2017. "The microgeographies of global finance: High-frequency trading and the construction of information inequality," Environment and Planning A, , vol. 49(1), pages 121-140, January.
    11. Benos, Evangelos & Sagade, Satchit, 2016. "Price discovery and the cross-section of high-frequency trading," Journal of Financial Markets, Elsevier, vol. 30(C), pages 54-77.
    12. Álvaro Cartea & José Penalva, 2012. "Where is the Value in High Frequency Trading?," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-46.
    13. Kang, Jongho & Kang, Jangkoo & Kwon, Kyung Yoon, 2022. "Market versus limit orders of speculative high-frequency traders and price discovery," Research in International Business and Finance, Elsevier, vol. 63(C).
    14. Robert J. Kauffman & Yuzhou Hu & Dan Ma, 2015. "Will high-frequency trading practices transform the financial markets in the Asia Pacific Region?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-27, December.
    15. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    16. Oliver Linton & Soheil Mahmoodzadeh, 2018. "Implications of High-Frequency Trading for Security Markets," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 237-259, August.
    17. George Jiang & Ingrid Lo & Giorgio Valente, 2014. "High-Frequency Trading around Macroeconomic News Announcements: Evidence from the U.S. Treasury Market," Staff Working Papers 14-56, Bank of Canada.
    18. Aggarwal, Nidhi & Panchapagesan, Venkatesh & Thomas, Susan, 2023. "When is the order-to-trade ratio fee effective?," Journal of Financial Markets, Elsevier, vol. 62(C).
    19. Leal, Sandrine Jacob & Napoletano, Mauro, 2019. "Market stability vs. market resilience: Regulatory policies experiments in an agent-based model with low- and high-frequency trading," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 15-41.
    20. Seddon, Jonathan J.J.M. & Currie, Wendy L., 2017. "A model for unpacking big data analytics in high-frequency trading," Journal of Business Research, Elsevier, vol. 70(C), pages 300-307.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:p98zv. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.