IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/bjx3q_v1.html
   My bibliography  Save this paper

Recommended LEED-Compliant Cars, SUVs, Vans, Pickup Trucks, Station Wagons, and Two Seaters for Smart Cities Based on the Environmental Damage Index (EDX) and Green Score

Author

Listed:
  • Marzouk, Osama A.

Abstract

An environment with reduced pollution from road vehicles and decarbonized transportation is one of the dimensions of smart cities. In this regard, new sales of vehicles intended for urban use should be oriented toward cleaner (greener) vehicles with less harmful environmental impacts. In the current study, two environmental rating variables provided by the American Council for an Energy-Efficient Economy (ACEEE) for model year 2023 vehicles (U.S. market) in 6 broad classes are employed to identify the best 10 models in each class. These classes are: two seaters (sports cars), cars, SUVs (sport utility vehicles), vans, station wagons (estate cars), and pickups (pickup trucks). The method used in these ratings is based on a combination of emissions life cycle assessment (LCA) and environmental economics. The first ACEEE rating variable is the environmental damage index (EDX), representing an estimated environmental damage cost (in U.S. cents per driving mile). The second ACEEE rating variable is the Green Score, which is a non-dimensional number (0–100 scale) derived from EDX. According to version 4 of the green building certification program LEED (Leadership in Energy and Environmental Design) of the U.S. Green Building Council (USGBC), green vehicles are defined as those having a Green Score of 45 or higher. In the current study, 85 selected top models were found to have a Green Score range from 41 to 67. Only 55 models of them (64.7% portion) are LEED compliant (classified as green vehicles), and thus are more recommended for use within smart cities than other models.

Suggested Citation

  • Marzouk, Osama A., 2024. "Recommended LEED-Compliant Cars, SUVs, Vans, Pickup Trucks, Station Wagons, and Two Seaters for Smart Cities Based on the Environmental Damage Index (EDX) and Green Score," OSF Preprints bjx3q_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:bjx3q_v1
    DOI: 10.31219/osf.io/bjx3q_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/67d9cb19b42d240260f3277c/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/bjx3q_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    2. Budy P. Resosudarmo & Lucentezza Napitupulu, 2004. "Health and Economic Impact of Air Pollution in Jakarta," The Economic Record, The Economic Society of Australia, vol. 80(s1), pages 65-75, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kisała Magdalena, 2021. "The Polish Experience in the Development of Smart Cities," TalTech Journal of European Studies, Sciendo, vol. 11(2), pages 48-64, September.
    2. Natina Yaduma & Mika Kortelainen & Ada Wossink, 2013. "Estimating Mortality and Economic Costs of Particulate Air Pollution in Developing Countries: The Case of Nigeria," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 361-387, March.
    3. Hanna Obracht-Prondzyńska & Ewa Duda & Helena Anacka & Jolanta Kowal, 2022. "Greencoin as an AI-Based Solution Shaping Climate Awareness," IJERPH, MDPI, vol. 19(18), pages 1-25, September.
    4. Pamučar, Dragan & Durán-Romero, Gemma & Yazdani, Morteza & López, Ana M., 2023. "A decision analysis model for smart mobility system development under circular economy approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    5. Carlo Amendola & Simone La Bella & Gian Piero Joime & Fabio Massimo Frattale Mascioli & Pietro Vito, 2022. "An Integrated Methodology Model for Smart Mobility System Applied to Sustainable Tourism," Administrative Sciences, MDPI, vol. 12(1), pages 1-14, March.
    6. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    7. Jeremy Webb & Max Briggs & Clevo Wilson, 2018. "Breaking automotive modal lock-in: a choice modelling study of Jakarta commuters," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 47-68, January.
    8. Rith, Monorom & Fillone, Alexis M. & Biona, Jose Bienvenido Manuel M., 2020. "Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southeast Asia – A case study of Metro Manila," Applied Energy, Elsevier, vol. 275(C).
    9. Saeed Nosratabadi & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Andry Rakotonirainy & Kwok Wing Chau, 2019. "Sustainable Business Models: A Review," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    10. Jiaojiao Li & Jianjun Dong & Rui Ren & Zhilong Chen, 2024. "Modeling Resilience of Metro-Based Urban Underground Logistics System Based on Multi-Layer Interdependent Network," Sustainability, MDPI, vol. 16(22), pages 1-23, November.
    11. Kwiatkowski Michał Adam, 2018. "Urban Cycling as an Indicator of Socio-Economic Innovation and Sustainable Transport," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 23-32, December.
    12. Iria Lopez-Carreiro & Andres Monzon & Elena Lopez, 2023. "MaaS Implications in the Smart City: A Multi-Stakeholder Approach," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    13. Lorena Reyes-Rubiano & Adrian Serrano-Hernandez & Jairo R. Montoya-Torres & Javier Faulin, 2021. "The Sustainability Dimensions in Intelligent Urban Transportation: A Paradigm for Smart Cities," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    14. de Amorim, Wellyngton Silva & Borchardt Deggau, André & do Livramento Gonçalves, Gabriélli & da Silva Neiva, Samara & Prasath, Arun R. & Salgueirinho Osório de Andrade Guerra, José Baltazar, 2019. "Urban challenges and opportunities to promote sustainable food security through smart cities and the 4th industrial revolution," Land Use Policy, Elsevier, vol. 87(C).
    15. Ginanjar Syuhada & Adhadian Akbar & Donny Hardiawan & Vivian Pun & Adi Darmawan & Sri Hayyu Alynda Heryati & Adiatma Yudistira Manogar Siregar & Ririn Radiawati Kusuma & Raden Driejana & Vijendra Ingo, 2023. "Impacts of Air Pollution on Health and Cost of Illness in Jakarta, Indonesia," IJERPH, MDPI, vol. 20(4), pages 1-14, February.
    16. Nosratabadi, Saeed & Mosavi, Amir & Shamshirband, Shahaboddin & Zavadskas, Edmundas Kazimieras & Rakotonirainy, Andry & Chau, Kwok Wing, 2020. "Sustainable Business Models: A Review," OSF Preprints u4xw3, Center for Open Science.
    17. Yuhui Guo & Zhiwei Tang & Jie Guo, 2020. "Could a Smart City Ameliorate Urban Traffic Congestion? A Quasi-Natural Experiment Based on a Smart City Pilot Program in China," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    18. Imelda, Imelda, 2019. "Cooking that Kills : Cleaner Energy, Indoor Air Pollution, and Health," UC3M Working papers. Economics 27982, Universidad Carlos III de Madrid. Departamento de Economía.
    19. Frauke Behrendt, 2019. "Cycling the Smart and Sustainable City: Analyzing EC Policy Documents on Internet of Things, Mobility and Transport, and Smart Cities," Sustainability, MDPI, vol. 11(3), pages 1-30, February.
    20. Douglas Mitieka & Rose Luke & Hossana Twinomurinzi & Joash Mageto, 2023. "Smart Mobility in Urban Areas: A Bibliometric Review and Research Agenda," Sustainability, MDPI, vol. 15(8), pages 1-23, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:bjx3q_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.