IDEAS home Printed from https://ideas.repec.org/p/oec/ecoaaa/772-en.html
   My bibliography  Save this paper

Can Emerging Asset Price Bubbles be Detected?

Author

Listed:
  • Jesús Crespo Crespo Cuaresma

    (University of Economics and Business, Vienna)

Abstract

Bayesian Model Averaging techniques are used to analyse how robustly it is possible to identify factors that may lead to the bursting of asset price bubbles in OECD economies. A large set of variables put forward in the literature is assessed, as well as interactions of these variables with estimates of asset price misalignments to evaluate the importance of the different channels postulated by theory. The results indicate that asset price misalignments are not robust determinants of house price reversals unless their interaction with other characteristics of the economy (credit growth, population growth and interest rate developments) is taken into account. On the other hand, stock price reversals are affected by misalignments, as well as other real and monetary variables. Out-of-sample prediction exercises provide evidence that dealing explicitly with model uncertainty using Bayesian model averaging techniques leads to better forecasts of reversals in asset prices than relying on model selection. Conclusions regarding the importance of dealing quantitatively with model uncertainty are drawn to improve the anticipation of asset price reversals. Peut-on détecter les bulles naissantes des prix des actifs ? Des techniques de modèle bayésien en moyenne ont été utilisées pour analyser dans quelle mesure il est possible d’identifier de façon robuste les facteurs qui peuvent provoquer l’éclatement de bulles des prix des actifs dans les économies de l’OCDE. Un large ensemble de variables mises en avant par les spécialistes a été évalué, de même que les interactions de ces variables avec les estimations des désalignements des prix des actifs, le but étant de déterminer l’importance des différents canaux retenus sur le plan théorique. Les résultats montrent que les désalignements des prix des actifs ne constituent pas un déterminant fiable des retournements des prix immobiliers, sauf si l’on prend en compte leur interaction avec d’autres caractéristiques de l’économie (croissance du crédit, croissance démographique et évolution des taux d’intérêt). En revanche, les retournements des cours des actions subissent les effets des désalignements ainsi que ceux d’autres variables réelles et monétaires. Des exercices de prévision hors échantillon montrent qu’en traitant expressément l’incertitude du modèle par des techniques bayésiennes en moyenne, on obtient des prévisions des retournements des prix des actifs qui sont meilleures qu’en sélectionnant un modèle. Ce document tire une série de conclusions quant à l’importance d’un traitement quantitatif de l’incertitude liée à la modélisation, afin de pouvoir mieux anticiper les retournements des prix des actifs.

Suggested Citation

  • Jesús Crespo Crespo Cuaresma, 2010. "Can Emerging Asset Price Bubbles be Detected?," OECD Economics Department Working Papers 772, OECD Publishing.
  • Handle: RePEc:oec:ecoaaa:772-en
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1787/5kmdfmztmqtj-en
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helmut Herwartz & Konstantin A. Kholodilin, 2014. "In‐Sample and Out‐of‐Sample Prediction of stock Market Bubbles: Cross‐Sectional Evidence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 15-31, January.
    2. Breitenfellner, Andreas & Crespo Cuaresma, Jesús & Mayer, Philipp, 2015. "Energy inflation and house price corrections," Energy Economics, Elsevier, vol. 48(C), pages 109-116.
    3. Leroi RAPUTSOANE, 2016. "Disaggregated Credit Extension and Financial Distress in South Africa," Journal of Economics Library, KSP Journals, vol. 3(2), pages 226-240, June.

    More about this item

    Keywords

    asset prices; cours des actions; house prices; incertitude des modèles; model averaging; model uncertainty; moyennes de modèles; prix des actifs; prix immobiliers; stock prices;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:ecoaaa:772-en. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/edoecfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.