IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/21679.html
   My bibliography  Save this paper

Pricing with Limited Knowledge of Demand

Author

Listed:
  • Maxime C. Cohen
  • Georgia Perakis
  • Robert S. Pindyck

Abstract

How should a firm price a new product for which little is known about demand? We propose a simple pricing rule: the firm only estimates the maximum price it can charge and still expect to sell at least some units, and then sets price as though the actual demand curve were linear. We show that if the true demand curve is one of many commonly used demand functions, or even if it is a more complex function, and if marginal cost is known and constant, the firm can expect its profit to be close to what it would earn if it knew the true demand curve. We derive analytical performance bounds for a variety of demand functions, and calculate expected profit performance for randomly generated demand curves.

Suggested Citation

  • Maxime C. Cohen & Georgia Perakis & Robert S. Pindyck, 2015. "Pricing with Limited Knowledge of Demand," NBER Working Papers 21679, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:21679
    Note: IO PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w21679.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vivek F. Farias & Benjamin Van Roy, 2010. "Dynamic Pricing with a Prior on Market Response," Operations Research, INFORMS, vol. 58(1), pages 16-29, February.
    2. Andrew E. B. Lim & J. George Shanthikumar, 2007. "Relative Entropy, Exponential Utility, and Robust Dynamic Pricing," Operations Research, INFORMS, vol. 55(2), pages 198-214, April.
    3. Rothschild, Michael, 1974. "A two-armed bandit theory of market pricing," Journal of Economic Theory, Elsevier, vol. 9(2), pages 185-202, October.
    4. Dirk Bergemann & Karl Schlag, 2012. "Robust Monopoly Pricing," World Scientific Book Chapters, in: Robust Mechanism Design The Role of Private Information and Higher Order Beliefs, chapter 13, pages 417-441, World Scientific Publishing Co. Pte. Ltd..
    5. Yossi Aviv & Amit Pazgal, 2005. "A Partially Observed Markov Decision Process for Dynamic Pricing," Management Science, INFORMS, vol. 51(9), pages 1400-1416, September.
    6. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    7. Michael O. Ball & Maurice Queyranne, 2009. "Toward Robust Revenue Management: Competitive Analysis of Online Booking," Operations Research, INFORMS, vol. 57(4), pages 950-963, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miller, Nathan H. & Remer, Marc & Ryan, Conor & Sheu, Gloria, 2017. "Upward pricing pressure as a predictor of merger price effects," International Journal of Industrial Organization, Elsevier, vol. 52(C), pages 216-247.
    2. Jian Hu & Junxuan Li & Sanjay Mehrotra, 2019. "A Data-Driven Functionally Robust Approach for Simultaneous Pricing and Order Quantity Decisions with Unknown Demand Function," Operations Research, INFORMS, vol. 67(6), pages 1564-1585, November.
    3. Omar Besbes & Adam N. Elmachtoub & Yunjie Sun, 2020. "Pricing Analytics for Rotable Spare Parts," Interfaces, INFORMS, vol. 50(5), pages 313-324, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxime C. Cohen, & Georgia Perakis & Robert S. Pindyck, 2021. "A Simple Rule for Pricing with Limited Knowledge of Demand," Management Science, INFORMS, vol. 67(3), pages 1608-1621, March.
    2. Arnoud V. den Boer, 2014. "Dynamic Pricing with Multiple Products and Partially Specified Demand Distribution," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 863-888, August.
    3. J. Michael Harrison & N. Bora Keskin & Assaf Zeevi, 2012. "Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution," Management Science, INFORMS, vol. 58(3), pages 570-586, March.
    4. Omar Besbes & Assaf Zeevi, 2012. "Blind Network Revenue Management," Operations Research, INFORMS, vol. 60(6), pages 1537-1550, December.
    5. Benjamin R. Handel & Kanishka Misra, 2015. "Robust New Product Pricing," Marketing Science, INFORMS, vol. 34(6), pages 864-881, November.
    6. Moshe Haviv & Ramandeep S. Randhawa, 2014. "Pricing in Queues Without Demand Information," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 401-411, July.
    7. Philipp Afèche & Barış Ata, 2013. "Bayesian Dynamic Pricing in Queueing Systems with Unknown Delay Cost Characteristics," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 292-304, May.
    8. Zizhuo Wang & Shiming Deng & Yinyu Ye, 2014. "Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems," Operations Research, INFORMS, vol. 62(2), pages 318-331, April.
    9. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.
    10. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    11. Yossi Aviv & Mike Mingcheng Wei & Fuqiang Zhang, 2019. "Responsive Pricing of Fashion Products: The Effects of Demand Learning and Strategic Consumer Behavior," Management Science, INFORMS, vol. 65(7), pages 2982-3000, July.
    12. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    13. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    14. Michael N. Katehakis & Yifeng Liu & Jian Yang, 2022. "A revisit to the markup practice of irreversible dynamic pricing," Annals of Operations Research, Springer, vol. 317(1), pages 77-105, October.
    15. Denis Sauré & Assaf Zeevi, 2013. "Optimal Dynamic Assortment Planning with Demand Learning," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 387-404, July.
    16. Will Ma & David Simchi-Levi & Chung-Piaw Teo, 2021. "On Policies for Single-Leg Revenue Management with Limited Demand Information," Operations Research, INFORMS, vol. 69(1), pages 207-226, January.
    17. Ahuja, Vishal & Birge, John R., 2016. "Response-adaptive designs for clinical trials: Simultaneous learning from multiple patients," European Journal of Operational Research, Elsevier, vol. 248(2), pages 619-633.
    18. J. Michael Harrison & Nur Sunar, 2015. "Investment Timing with Incomplete Information and Multiple Means of Learning," Operations Research, INFORMS, vol. 63(2), pages 442-457, April.
    19. Hao Zhang, 2022. "Analytical Solution to a Discrete-Time Model for Dynamic Learning and Decision Making," Management Science, INFORMS, vol. 68(8), pages 5924-5957, August.
    20. Kanishka Misra & Eric M. Schwartz & Jacob Abernethy, 2019. "Dynamic Online Pricing with Incomplete Information Using Multiarmed Bandit Experiments," Marketing Science, INFORMS, vol. 38(2), pages 226-252, March.

    More about this item

    JEL classification:

    • D40 - Microeconomics - - Market Structure, Pricing, and Design - - - General
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:21679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.