IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Bayesian Bandwidth Selection in Nonparametric Time-Varying Coefficient Models

  • Tingting Cheng


  • Jiti Gao


  • Xibin Zhang


Registered author(s):

Bandwidth plays an important role in determining the performance of local linear estimators. In this paper, we propose a Bayesian approach to bandwidth selection for local linear estimation of time–varying coefficient time series models, where the errors are assumed to follow the Gaussian kernel error density. A Markov chain Monte Carlo algorithm is presented to simultaneously estimate the bandwidths for local linear estimators in the regression function and the bandwidth for the Gaussian kernel error–density estimator. A Monte Carlo simulation study shows that: 1) our proposed Bayesian approach achieves better performance in estimating the bandwidths for local linear estimators than normal reference rule and cross–validation; 2) compared with the parametric assumption of either the Gaussian or the mixture of two Gaussians, Gaussian kernel error–density assumption is a data–driven choice and helps gain robustness in terms of different specification of the true error density. Moreover, we apply our proposed Bayesian sampling method to the estimation of bandwidth for the time–varying coefficient models that explain Okun’s law and the relationship between consumption growth and income growth in the U.S. For each model, we also provide calibrated parametric form of its time–varying coefficients.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 7/13.

in new window

Date of creation: 2013
Date of revision:
Handle: RePEc:msh:ebswps:2013-7
Contact details of provider: Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61 3 99052489
Fax: +61 3 99055474
Web page:

More information through EDIRC

Order Information: Web: Email:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2013-7. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.