IDEAS home Printed from https://ideas.repec.org/p/mlb/wpaper/1093.html

Bivariate Income Distributions for AssessingInequality and Poverty Under Dependent Samples

Author

Listed:
  • Andrea Vinh
  • William E. Griffiths
  • Duangkamon Chotikapanich

Abstract

As indicators of social welfare, the incidence of inequality and poverty is of ongoing concern to policy makers and researchers alike. Of particular interest are the changes in inequality and poverty over time, which are typically assessed through the estimation of income distributions. From this, income inequality and poverty measures, along with their differences and standard errors, can be derived and compared. With panel data becoming more frequently used to make such comparisons, traditional methods which treat income distributions from different years independently and estimate them on a univariate basis, fail to capture the dependence inherent in a sample taken from a panel study. Consequently, parameter estimates are likely to be less efficient, and the standard errors for between-year differences in various inequality and poverty measures will be incorrect. This paper addresses the issue of sample dependence by suggesting a number of bivariate distributions, with Singh-Maddala or Dagum marginals, for a partially dependent sample of household income for two years. Specifically, the distributions considered are the bivariate Singh-Maddala distribution, proposed by Takahasi (1965), and bivariate distributions belonging to the copula class of multivariate distributions, which are an increasingly popular approach to modelling joint distributions. Each bivariate income distribution is estimated via full information maximum likelihood using data from the Household, Income and Labour Dynamics in Australia (HILDA) Survey for 2001 and 2005. Parameter estimates for each bivariate income distribution are used to obtain values for mean income and modal income, the Gini inequality coefficient and the headcount ratio poverty measure, along with their differences, enabling the assessment of changes in such measures over time. In addition, the standard errors of each summary measure and their differences, which are of particular interest in this analysis, are calculated using the delta method.

Suggested Citation

  • Andrea Vinh & William E. Griffiths & Duangkamon Chotikapanich, 2010. "Bivariate Income Distributions for AssessingInequality and Poverty Under Dependent Samples," Department of Economics - Working Papers Series 1093, The University of Melbourne.
  • Handle: RePEc:mlb:wpaper:1093
    as

    Download full text from publisher

    File URL: http://fbe.unimelb.edu.au/__data/assets/pdf_file/0020/801083/1093.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amponsah, Mary & Agbola, Frank W. & Mahmood, Amir, 2023. "The relationship between poverty, income inequality and inclusive growth in Sub-Saharan Africa," Economic Modelling, Elsevier, vol. 126(C).
    2. Yang, Xipei & Frees, Edward W. & Zhang, Zhengjun, 2011. "A generalized beta copula with applications in modeling multivariate long-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 265-284, September.
    3. Lee, Chien-Chiang & Chang, Chi-Hung & Chen, Mei-Ping, 2015. "Industry co-movements of American depository receipts: Evidences from the copula approaches," Economic Modelling, Elsevier, vol. 46(C), pages 301-314.
    4. David Gunawan & William E. Griffiths & Duangkamon Chotikapanich, 2021. "Posterior Probabilities for Lorenz and Stochastic Dominance of Australian Income Distributions," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 504-524, December.
    5. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    6. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mlb:wpaper:1093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dandapani Lokanathan (email available below). General contact details of provider: https://edirc.repec.org/data/demelau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.