IDEAS home Printed from https://ideas.repec.org/p/mcr/wpdief/wpaper00043.html
   My bibliography  Save this paper

Bayesian inference for Hidden Markov Model

Author

Listed:
  • Rosella Castellano

    (University of Macerata)

  • Luisa Scaccia

    (University of Macerata)

Abstract

Hidden Markov Models can be considered an extension of mixture models, allowing for dependent observations. In a hierarchical Bayesian framework, we show how Reversible Jump Markov Chain Monte Carlo techniques can be used to estimate the parameters of a model, as well as the number of regimes. We consider a mixture of normal distributions characterized by different means and variances under each regime, extending the model proposed by Robert et al. (2000), based on a mixture of zero mean normal distributions.

Suggested Citation

  • Rosella Castellano & Luisa Scaccia, 2007. "Bayesian inference for Hidden Markov Model," Working Papers 43-2007, Macerata University, Department of Finance and Economic Sciences, revised Oct 2008.
  • Handle: RePEc:mcr:wpdief:wpaper00043
    as

    Download full text from publisher

    File URL: http://www.unimc.it/dief/wpaper/wpaper00043/filePaper
    Download Restriction: no

    References listed on IDEAS

    as
    1. Peter J. Green, 2001. "Modelling Heterogeneity With and Without the Dirichlet Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 355-375.
    2. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    3. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    4. Billio, M. & Monfort, A. & Robert, C. P., 1999. "Bayesian estimation of switching ARMA models," Journal of Econometrics, Elsevier, vol. 93(2), pages 229-255, December.
    5. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mcr:wpdief:wpaper00043. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Silvana Tartufoli) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/dimacit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.