IDEAS home Printed from https://ideas.repec.org/p/jgu/wpaper/1710.html
   My bibliography  Save this paper

Bidirectional Labeling in Column-Generation Algorithms for Pickup-and-Delivery Problems

Author

Listed:
  • Timo Gschwind

    (Johannes Gutenberg-University Mainz, Germany)

  • Stefan Irnich

    (Johannes Gutenberg-University Mainz, Germany)

  • Ann-Kathrin Rothenbaecher

    (Johannes Gutenberg-University Mainz, Germany)

  • Christian Tilk

    (Johannes Gutenberg-University Mainz, Germany)

Abstract

For the exact solution of many types of vehicle-routing problems, column-generation based algorithms have become predominant. The column-generation subproblems are then variants of the shortest-path problem with resource constraints which can be solved well with dynamic-programming labeling algorithms. For vehicle-routing problems with a pickup-and-delivery structure, the strongest known dominance between two labels requires the delivery triangle inequality (DTI) for reduced costs to hold. When the direction of labeling is altered from forward labeling to backward labeling, the DTI requirement becomes the pickup triangle inequality (PTI). DTI and PTI cannot be guaranteed at the same time. The consequence seemed to be that bidirectional labeling, one of the most successful acceleration techniques developed over the last years, is not applicable with a strong dominance in both directions for problems with a pickup-and-delivery structure. Surely, relying on a weak dominance in one direction is feasible but makes the bidirectional approach less powerful. In this paper, we show that bidirectional labeling with the strongest dominance rules in forward as well as backward direction is possible and computationally bene?cial. A full-?edged branch-cut-and-price algorithm is tested on the pickup-and-delivery problem with time windows (PDPTW).

Suggested Citation

  • Timo Gschwind & Stefan Irnich & Ann-Kathrin Rothenbaecher & Christian Tilk, 2017. "Bidirectional Labeling in Column-Generation Algorithms for Pickup-and-Delivery Problems," Working Papers 1710, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  • Handle: RePEc:jgu:wpaper:1710
    as

    Download full text from publisher

    File URL: https://download.uni-mainz.de/RePEc/pdf/Discussion_Paper_1710.pdf
    File Function: First version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    2. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi, 2011. "An Exact Algorithm for the Pickup and Delivery Problem with Time Windows," Operations Research, INFORMS, vol. 59(2), pages 414-426, April.
    3. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    4. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    5. Cherkesly, Marilène & Desaulniers, Guy & Irnich, Stefan & Laporte, Gilbert, 2016. "Branch-price-and-cut algorithms for the pickup and delivery problem with time windows and multiple stacks," European Journal of Operational Research, Elsevier, vol. 250(3), pages 782-793.
    6. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    7. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    8. Niklas Kohl & Jacques Desrosiers & Oli B. G. Madsen & Marius M. Solomon & François Soumis, 1999. "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 33(1), pages 101-116, February.
    9. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2012. "New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 356-371, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Hintsch & Stefan Irnich, 2018. "Exact Solution of the Soft-Clustered Vehicle Routing Problem," Working Papers 1813, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    2. Gschwind, Timo & Irnich, Stefan & Rothenbächer, Ann-Kathrin & Tilk, Christian, 2018. "Bidirectional labeling in column-generation algorithms for pickup-and-delivery problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 521-530.
    3. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.
    4. Yuan Qu & Jonathan F. Bard, 2015. "A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable Vehicle Capacity," Transportation Science, INFORMS, vol. 49(2), pages 254-270, May.
    5. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    6. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    7. Masson, Renaud & Ropke, Stefan & Lehuédé, Fabien & Péton, Olivier, 2014. "A branch-and-cut-and-price approach for the pickup and delivery problem with shuttle routes," European Journal of Operational Research, Elsevier, vol. 236(3), pages 849-862.
    8. Katrin Heßler & Stefan Irnich, 2021. "Partial Dominance in Branch-Price-and-Cut for the Basic Multi-Compartment Vehicle-Routing Problem," Working Papers 2115, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Gschwind, Timo, 2015. "A comparison of column-generation approaches to the Synchronized Pickup and Delivery Problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 60-71.
    10. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Tilk, Christian & Goel, Asvin, 2020. "Bidirectional labeling for solving vehicle routing and truck driver scheduling problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 108-124.
    13. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    14. Tilk, Christian & Drexl, Michael & Irnich, Stefan, 2019. "Nested branch-and-price-and-cut for vehicle routing problems with multiple resource interdependencies," European Journal of Operational Research, Elsevier, vol. 276(2), pages 549-565.
    15. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    16. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    17. Li, Chongshou & Gong, Lijun & Luo, Zhixing & Lim, Andrew, 2019. "A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing," Omega, Elsevier, vol. 89(C), pages 71-91.
    18. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    19. Katrin Heßler & Stefan Irnich, 2023. "Partial Dominance in Branch-Price-and-Cut for the Basic Multicompartment Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 50-65, January.
    20. Luo, Zhixing & Qin, Hu & Lim, Andrew, 2014. "Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints," European Journal of Operational Research, Elsevier, vol. 234(1), pages 49-60.

    More about this item

    Keywords

    vehicle routing; pickup-and-delivery; shortest-path problem with resource constraints; bidirectional labeling; column generation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jgu:wpaper:1710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit IPP (email available below). General contact details of provider: https://edirc.repec.org/data/vlmaide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.