IDEAS home Printed from https://ideas.repec.org/p/jet/dpaper/dpaper487.html

The emission reduction effect and economic impact of an energy tax vs. a carbon tax in China : a dynamic CGE model analysis

Author

Listed:
  • Zou, Lele
  • Xue, Jinjun
  • Fox, Alan
  • Meng, Bo
  • Shibata, Tsubasa

Abstract

Chinese government commits to reach its peak carbon emissions before 2030, which requires China to implement new policies. Using a CGE model, this study conducts simulation studies on the functions of an energy tax and a carbon tax and analyzes their effects on macro-economic indices. The Chinese economy is affected at an acceptable level by the two taxes. GDP will lose less than 0.8% with a carbon tax of 100, 50, or 10 RMB/ton CO2 or 5% of the delivery price of an energy tax. Thus, the loss of real disposable personal income is smaller. Compared with implementing a single tax, a combined carbon and energy tax induces more emission reductions with relatively smaller economic costs. With these taxes, the domestic competitiveness of energy intensive industries is improved. Additionally, we found that the sooner such taxes are launched, the smaller the economic costs and the more significant the achieved emission reductions.

Suggested Citation

  • Zou, Lele & Xue, Jinjun & Fox, Alan & Meng, Bo & Shibata, Tsubasa, 2015. "The emission reduction effect and economic impact of an energy tax vs. a carbon tax in China : a dynamic CGE model analysis," IDE Discussion Papers 487, Institute of Developing Economies, Japan External Trade Organization(JETRO).
  • Handle: RePEc:jet:dpaper:dpaper487
    as

    Download full text from publisher

    File URL: https://ir.ide.go.jp/record/37689/files/IDP000487_001.pdf
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    2. Li, Meng & Gao, Yuning & Meng, Bo & Yang, Zhusong, 2021. "Managing the mitigation: Analysis of the effectiveness of target-based policies on China's provincial carbon emission and transfer," Energy Policy, Elsevier, vol. 151(C).
    3. Shuai Shi & Yu Jing & Cuixia Li, 2019. "Mitigation Effect of Carbon Emission Tax in Dairy Farming: An Empirical Study of Heilongjiang Province in China," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    4. Meng, Bo & Liu, Yu & Andrew, Robbie & Zhou, Meifang & Hubacek, Klaus & Xue, Jinjun & Peters, Glen & Gao, Yuning, 2018. "More than half of China’s CO2 emissions are from micro, small and medium-sized enterprises," Applied Energy, Elsevier, vol. 230(C), pages 712-725.
    5. Qian Zhou & Ying Peng & Wenchao Wu & Helmut Yabar & Ying Han & Yanbin Li, 2024. "Mitigation policies evaluation in the electric power sector for carbon neutrality, water conservation, and economic growth in the Beijing–Tianjin–Hebei region: a simulation with multi-regional dynamic," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11431-11453, May.
    6. Boqiang Lin & Zhijie Jia, 2020. "Supply control vs. demand control: why is resource tax more effective than carbon tax in reducing emissions?," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    7. Cao, Jing & Dai, Hancheng & Li, Shantong & Guo, Chaoyi & Ho, Mun & Cai, Wenjia & He, Jianwu & Huang, Hai & Li, Jifeng & Liu, Yu & Qian, Haoqi & Wang, Can & Wu, Libo & Zhang, Xiliang, 2021. "The general equilibrium impacts of carbon tax policy in China: A multi-model comparison," Energy Economics, Elsevier, vol. 99(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • K32 - Law and Economics - - Other Substantive Areas of Law - - - Energy, Environmental, Health, and Safety Law
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jet:dpaper:dpaper487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michitaka Imamitsu (email available below). General contact details of provider: https://edirc.repec.org/data/idegvjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.