IDEAS home Printed from https://ideas.repec.org/p/ise/remwps/wp03732025.html
   My bibliography  Save this paper

The effects and financial impacts of wildfire smoke on solar photovoltaic power production in Alberta, Canada

Author

Listed:
  • Samantha M. Treacy
  • Alexandra B. Moura

Abstract

As reliance on solar photovoltaic (PV) generation grows, particularly in Alberta, accounting for the impact of wildfire smoke on solar energy production is crucial. This is particularly relevant in regions with high PV generation potential, such as Alberta, as they are often more vulnerable to frequent and intense wildfires. This study quantifies PV energy losses and financial impacts due to wildfire smoke in Alberta, using fine particulate matter 2.5 (PM2.5) as a proxy for smoke pollution. Historical weather and PM2.5 data, along with simulated PV production from actual completed, proposed, and under-construction projects, are used to train and test the model. The simulated data is validated against real production data. The six-year study (2018–2023) covers major wildfire years and employs machine learning techniques, particularly random forest regression, to isolate the effects of PM2.5 on solar production. Financial losses are estimated in Canadian dollars, adjusted for inflation to December 2023. Results show a PV production decline of up to 6.3% at a single solar site over six years, with an overall average reduction of 3.91% under severe conditions. The cumulative impact led to a 0.19% average generation loss, equating to over $4.5 million in financial losses. Higher smoke levels consistently correlate with greater solar energy losses, aligning with findings from other regions. The results of this study enhance our understanding of climate change impacts on solar energy, highlighting wildfire smoke as a relevant factor. As PV adoption expands, these findings offer valuable insights for decision-makers and operational planners, emphasizing the need for strategies to mitigate smoke-related disruptions and ensure energy reliability.

Suggested Citation

  • Samantha M. Treacy & Alexandra B. Moura, 2025. "The effects and financial impacts of wildfire smoke on solar photovoltaic power production in Alberta, Canada," Working Papers REM 2025/0373, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  • Handle: RePEc:ise:remwps:wp03732025
    as

    Download full text from publisher

    File URL: https://rem.rc.iseg.ulisboa.pt/wps/pdf/REM_WP_0373_2025.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meral, Mehmet Emin & Dinçer, Furkan, 2011. "A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2176-2184, June.
    2. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    3. Sánchez-Pozo, Nadia N. & Vanem, Erik & Bloomfield, Hannah & Aizpurua, Jose I., 2025. "A probabilistic risk assessment framework for the impact assessment of extreme events on renewable power plant components," Renewable Energy, Elsevier, vol. 240(C).
    4. Piyush Jain & Quinn E. Barber & Stephen W. Taylor & Ellen Whitman & Dante Castellanos Acuna & Yan Boulanger & Raphaël D. Chavardès & Jack Chen & Peter Englefield & Mike Flannigan & Martin P. Girardin , 2024. "Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Gilletly, Samuel D. & Jackson, Nicole D. & Staid, Andrea, 2023. "Evaluating the impact of wildfire smoke on solar photovoltaic production," Applied Energy, Elsevier, vol. 348(C).
    6. Seul-Gi Kim & Jae-Yoon Jung & Min Kyu Sim, 2019. "A Two-Step Approach to Solar Power Generation Prediction Based on Weather Data Using Machine Learning," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    7. Gómez-Amo, J.L. & Freile-Aranda, M.D. & Camarasa, J. & Estellés, V. & Utrillas, M.P. & Martínez-Lozano, J.A., 2019. "Empirical estimates of the radiative impact of an unusually extreme dust and wildfire episode on the performance of a photovoltaic plant in Western Mediterranean," Applied Energy, Elsevier, vol. 235(C), pages 1226-1234.
    8. Mladen Bošnjaković & Marinko Stojkov & Marko Katinić & Ivica Lacković, 2023. "Effects of Extreme Weather Conditions on PV Systems," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    9. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cucchiella, Federica & D'Adamo, Idiano, 2012. "Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5245-5259.
    2. Obiwulu, Anthony Umunnakwe & Erusiafe, Nald & Olopade, Muteeu Abayomi & Nwokolo, Samuel Chukwujindu, 2020. "Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance," Renewable Energy, Elsevier, vol. 154(C), pages 404-431.
    3. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    4. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    5. Heo, Jae & Song, Kwonsik & Han, SangUk & Lee, Dong-Eun, 2021. "Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting," Applied Energy, Elsevier, vol. 295(C).
    6. Mladen Bošnjaković & Marinko Stojkov & Marko Katinić & Ivica Lacković, 2023. "Effects of Extreme Weather Conditions on PV Systems," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    7. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    8. Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
    9. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2021. "Weather Data Mixing Models for Day-Ahead PV Forecasting in Small-Scale PV Plants," Energies, MDPI, vol. 14(11), pages 1-16, May.
    10. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    11. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    12. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    14. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    15. Ahmad Abuelrub & Osama Saadeh & Hussein M. K. Al-Masri, 2018. "Scenario Aggregation-Based Grid-Connected Photovoltaic Plant Design," Sustainability, MDPI, vol. 10(4), pages 1-13, April.
    16. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    17. Mostafa. F. Shaaban & Amal Alarif & Mohamed Mokhtar & Usman Tariq & Ahmed H. Osman & A. R. Al-Ali, 2020. "A New Data-Based Dust Estimation Unit for PV Panels," Energies, MDPI, vol. 13(14), pages 1-17, July.
    18. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    19. Margarete Afonso de Sousa Guilhon Araujo & Soraida Aguilar & Reinaldo Castro Souza & Fernando Luiz Cyrino Oliveira, 2024. "Global Horizontal Irradiance in Brazil: A Comparative Study of Reanalysis Datasets with Ground-Based Data," Energies, MDPI, vol. 17(20), pages 1-25, October.
    20. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.

    More about this item

    Keywords

    Photovoltaic production; Wildfires; PM2.5; Financial impact; Random forest; Solar power.;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • N72 - Economic History - - Economic History: Transport, International and Domestic Trade, Energy, and Other Services - - - U.S.; Canada: 1913-
    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ise:remwps:wp03732025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sandra Araújo (email available below). General contact details of provider: https://rem.rc.iseg.ulisboa.pt/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.