IDEAS home Printed from
   My bibliography  Save this paper

Do Options Contain Information About Excess Bond Returns?


  • Caio Almeida

    (IBMEC Business School - Rio de Janeiro)

  • Jeremy J. Graveline

    (Stanford Graduate School of Business)

  • Scott Joslin

    (Stanford Graduate School of Business)


There is strong empirical evidence that risk premia in long-term interest rates are time-varying. These risk premia critically depend on interest rate volatility, yet existing research has not examined the impact of time-varying volatility on excess returns for long-term bonds. To address this issue, we incorporate interest rate option prices, which are very sensitive to interest rate volatility, into a dynamic model for the term structure of interest rates. We estimate three-factor affine term structure models using both swap rates and interest rate cap prices. When we incorporate option prices, the model better captures interest rate volatility and is better able to predict excess returns for long-term swaps over short-term swaps, both in- and out-of-sample. Our results indicate that interest rate options contain valuable information about risk premia and interest rate dynamics that cannot be extracted from interest rates alone.

Suggested Citation

  • Caio Almeida & Jeremy J. Graveline & Scott Joslin, 2005. "Do Options Contain Information About Excess Bond Returns?," IBMEC RJ Economics Discussion Papers 2005-04, Economics Research Group, IBMEC Business School - Rio de Janeiro.
  • Handle: RePEc:ibr:dpaper:2005-04

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Jagannathan, Ravi & Kaplin, Andrew & Sun, Steve, 2003. "An evaluation of multi-factor CIR models using LIBOR, swap rates, and cap and swaption prices," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 113-146.
    2. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    3. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    4. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31 World Scientific Publishing Co. Pte. Ltd..
    5. John Y. Campbell & Robert J. Shiller, 1991. "Yield Spreads and Interest Rate Movements: A Bird's Eye View," Review of Economic Studies, Oxford University Press, vol. 58(3), pages 495-514.
    6. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    7. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    8. Patrick Cheridito & Damir Filipovic, 2004. "Market Price of Risk Specifications for Affine Models: Theory and Evidence," Econometric Society 2004 North American Winter Meetings 536, Econometric Society.
    9. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    10. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Collin-Dufresne, Pierre & Goldstein, Robert S. & Jones, Christopher S., 2009. "Can interest rate volatility be extracted from the cross section of bond yields?," Journal of Financial Economics, Elsevier, vol. 94(1), pages 47-66, October.
    2. Almeida, Caio & Vicente, José, 2009. "Are interest rate options important for the assessment of interest rate risk?," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1376-1387, August.
    3. Philippe Mueller & Andrea Vedolin & Yu-min Yen, 2012. "Bond Variance Risk Premia," FMG Discussion Papers dp699, Financial Markets Group.
    4. Don H Kim, 2007. "Spanned stochastic volatility in bond markets: a reexamination of the relative pricing between bonds and bond options," BIS Working Papers 239, Bank for International Settlements.
    5. Jacobs, Kris & Karoui, Lotfi, 2009. "Conditional volatility in affine term-structure models: Evidence from Treasury and swap markets," Journal of Financial Economics, Elsevier, vol. 91(3), pages 288-318, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibr:dpaper:2005-04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Márcio Laurini). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.