IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2012-003.html
   My bibliography  Save this paper

A Donsker Theorem for Lévy Measures

Author

Listed:
  • Richard Nickl
  • Markus Reiß

Abstract

Given n equidistant realisations of a Lévy process (Lt; t >= 0), a natural estimator for the distribution function N of the Lévy measure is constructed. Under a polynomial decay restriction on the characteristic function, a Donsker-type theorem is proved, that is, a functional central limit theorem for the process in the space of bounded functions away from zero. The limit distribution is a generalised Brownian bridge process with bounded and continuous sample paths whose covariance structure depends on the Fourier-integral operator. The class of Lévy processes covered includes several relevant examples such as compound Poisson, Gamma and self-decomposable processes. Main ideas in the proof include establishing pseudo-locality of the Fourier-integral operator and recent techniques from smoothed empirical processes.

Suggested Citation

  • Richard Nickl & Markus Reiß, 2012. "A Donsker Theorem for Lévy Measures," SFB 649 Discussion Papers SFB649DP2012-003, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2012-003
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2012-003.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Denis Belomestny & Markus Reiß, 2006. "Spectral calibration of exponential Lévy models," Finance and Stochastics, Springer, vol. 10(4), pages 449-474, December.
    2. Belomestny, Denis, 2011. "Spectral estimation of the Lévy density in partially observed affine models," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1217-1244, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trabs, Mathias, 2014. "On infinitely divisible distributions with polynomially decaying characteristic functions," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 56-62.
    2. Koltchinskii, Vladimir & Nickl, Richard & van de Geer, Sara & Wellner, Jon A., 2016. "The mathematical work of Evarist Giné," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3607-3622.
    3. Reiß, Markus, 2013. "Testing the characteristics of a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2808-2828.
    4. Vetter, Mathias, 2014. "Inference on the Lévy measure in case of noisy observations," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 125-133.
    5. Trabs, Mathias, 2015. "Quantile estimation for Lévy measures," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3484-3521.
    6. Hoffmann, Michael & Vetter, Mathias, 2017. "Weak convergence of the empirical truncated distribution function of the Lévy measure of an Itō semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1517-1543.
    7. Mélina Bec & Claire Lacour, 2015. "Adaptive pointwise estimation for pure jump Lévy processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 229-256, October.

    More about this item

    Keywords

    uniform central limit theorem; nonlinear inverse problem; smoothed empirical processes; pseudo-differential operators; jump measure;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2012-003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.