A Donsker Theorem for Lévy Measures
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Denis Belomestny & Markus Reiß, 2006.
"Spectral calibration of exponential Lévy models,"
Finance and Stochastics,
Springer, vol. 10(4), pages 449-474, December.
- Denis Belomestny & Markus Reiß, 2006. "Spectral calibration of exponential Lévy Models [2]," SFB 649 Discussion Papers SFB649DP2006-035, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Denis Belomestny & Markus Reiß, 2006. "Spectral calibration of exponential Lévy Models [1]," SFB 649 Discussion Papers SFB649DP2006-034, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Belomestny, Denis, 2011. "Spectral estimation of the Lévy density in partially observed affine models," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1217-1244, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Trabs, Mathias, 2014. "On infinitely divisible distributions with polynomially decaying characteristic functions," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 56-62.
- Koltchinskii, Vladimir & Nickl, Richard & van de Geer, Sara & Wellner, Jon A., 2016. "The mathematical work of Evarist Giné," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3607-3622.
- Reiß, Markus, 2013. "Testing the characteristics of a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2808-2828.
- Vetter, Mathias, 2014. "Inference on the Lévy measure in case of noisy observations," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 125-133.
- Trabs, Mathias, 2015. "Quantile estimation for Lévy measures," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3484-3521.
- Hoffmann, Michael & Vetter, Mathias, 2017. "Weak convergence of the empirical truncated distribution function of the Lévy measure of an Itō semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1517-1543.
- Mélina Bec & Claire Lacour, 2015. "Adaptive pointwise estimation for pure jump Lévy processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 229-256, October.
More about this item
Keywords
uniform central limit theorem; nonlinear inverse problem; smoothed empirical processes; pseudo-differential operators; jump measure;JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ALL-2012-01-18 (All new papers)
- NEP-ECM-2012-01-18 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2012-003. See general information about how to correct material in RePEc.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
Please note that corrections may take a couple of weeks to filter through the various RePEc services.