IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i4d10.1007_s11009-017-9552-9.html
   My bibliography  Save this article

Estimation of Lévy Processes via Stochastic Programming and Kalman Filtering

Author

Listed:
  • Mark Anthony Caruana

    (University of Malta)

Abstract

The estimation of Lévy process has received a lot of attention in recent years. Evidence of this is the extensive amount of literature concerning this problem which can be classified in two categories: the nonparametric approach, and the parametric approach. In this paper, we shall concentrate on the latter, and in particular the parameters will be estimated within a stochastic programming framework. To be more specific, the first derivative of the characteristic function and its empirical version shall be used in objective function. Furthermore, the parameter estimates are recursively estimated by making use of a modified extended Kalman filter (MEKF). Some properties of the parameter estimates are studied. Finally, a number of simulations will be carried out and the results are presented and discussed.

Suggested Citation

  • Mark Anthony Caruana, 2017. "Estimation of Lévy Processes via Stochastic Programming and Kalman Filtering," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1211-1225, December.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-017-9552-9
    DOI: 10.1007/s11009-017-9552-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9552-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9552-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denis Belomestny & Markus Reiß, 2006. "Spectral calibration of exponential Lévy models," Finance and Stochastics, Springer, vol. 10(4), pages 449-474, December.
    2. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, December.
    3. Shota Gugushvili, 2009. "Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(3), pages 321-343.
    4. Florian Ueltzhöfer & Claudia Klüppelberg, 2011. "An oracle inequality for penalised projection estimation of Lévy densities from high-frequency observations," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 967-989.
    5. Comte, F. & Genon-Catalot, V., 2009. "Nonparametric estimation for pure jump Lévy processes based on high frequency data," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4088-4123, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johanna Kappus & Markus Reiß, 2010. "Estimation of the characteristics of a Lévy process observed at arbitrary frequency," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 314-328.
    2. Kappus, Johanna, 2014. "Adaptive nonparametric estimation for Lévy processes observed at low frequency," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 730-758.
    3. Reiß, Markus, 2013. "Testing the characteristics of a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2808-2828.
    4. Schmisser, Émeline, 2019. "Non parametric estimation of the diffusion coefficients of a diffusion with jumps," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5364-5405.
    5. Mélina Bec & Claire Lacour, 2015. "Adaptive pointwise estimation for pure jump Lévy processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 229-256, October.
    6. repec:hum:wpaper:sfb649dp2012-016 is not listed on IDEAS
    7. repec:hum:wpaper:sfb649dp2012-003 is not listed on IDEAS
    8. Söhl, Jakob, 2010. "Polar sets for anisotropic Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 840-847, May.
    9. Söhl, Jakob, 2009. "Polar sets of anisotropic Gaussian random fields," SFB 649 Discussion Papers 2009-058, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Kato, Kengo & Kurisu, Daisuke, 2020. "Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1159-1205.
    11. Kappus, Johanna & Reiß, Markus, 2010. "Estimation of the characteristics of a Lévy process observed at arbitrary frequency," SFB 649 Discussion Papers 2010-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Kappus, Johanna, 2012. "Nonparametric adaptive estimation of linear functionals for low frequency observed Lévy processes," SFB 649 Discussion Papers 2012-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Zhang, Zhimin & Yang, Hailiang, 2014. "Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 168-177.
    14. Akakpo, Nathalie, 2017. "Multivariate intensity estimation via hyperbolic wavelet selection," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 32-57.
    15. Fabienne Comte & Céline Duval & Valentine Genon-Catalot, 2014. "Nonparametric density estimation in compound Poisson processes using convolution power estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(1), pages 163-183, January.
    16. Nickl, Richard & Reiß, Markus, 2012. "A Donsker theorem for Lévy measures," SFB 649 Discussion Papers 2012-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    18. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    19. Yoici Arai & Taisuke Otsu & Mengshan Xu, 2022. "GLS under monotone heteroskedasticity," STICERD - Econometrics Paper Series 625, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    21. Higgins, Ayden & Jochmans, Koen, 2025. "Inference in Dynamic Models for Panel Data Using The Moving Block Bootstrap," TSE Working Papers 25-1620, Toulouse School of Economics (TSE).
    22. Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-017-9552-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.