IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2012-003.html

A Donsker theorem for Lévy measures

Author

Listed:
  • Nickl, Richard
  • Reiß, Markus

Abstract

Given n equidistant realisations of a Lévy process (Lt; t >= 0), a natural estimator for the distribution function N of the Lévy measure is constructed. Under a polynomial decay restriction on the characteristic function, a Donsker-type theorem is proved, that is, a functional central limit theorem for the process in the space of bounded functions away from zero. The limit distribution is a generalised Brownian bridge process with bounded and continuous sample paths whose covariance structure depends on the Fourier-integral operator. The class of Lévy processes covered includes several relevant examples such as compound Poisson, Gamma and self-decomposable processes. Main ideas in the proof include establishing pseudo-locality of the Fourier-integral operator and recent techniques from smoothed empirical processes.

Suggested Citation

  • Nickl, Richard & Reiß, Markus, 2012. "A Donsker theorem for Lévy measures," SFB 649 Discussion Papers 2012-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2012-003
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/56623/1/682401943.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shota Gugushvili, 2009. "Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(3), pages 321-343.
    2. Trabs, Mathias, 2011. "Calibration of self-decomposable Lévy models," SFB 649 Discussion Papers 2011-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Richard Nickl & Benedikt M. Pötscher, 2007. "Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov- and Sobolev-Type," Journal of Theoretical Probability, Springer, vol. 20(2), pages 177-199, June.
    4. repec:hum:wpaper:sfb649dp2011-073 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reiß, Markus, 2013. "Testing the characteristics of a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2808-2828.
    2. Schmisser, Émeline, 2019. "Non parametric estimation of the diffusion coefficients of a diffusion with jumps," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5364-5405.
    3. Kato, Kengo & Kurisu, Daisuke, 2020. "Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1159-1205.
    4. Kappus, Johanna & Reiß, Markus, 2010. "Estimation of the characteristics of a Lévy process observed at arbitrary frequency," SFB 649 Discussion Papers 2010-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2012-016 is not listed on IDEAS
    6. Fabienne Comte & Valentine Genon-Catalot, 2010. "Non-parametric estimation for pure jump irregularly sampled or noisy Lévy processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 290-313.
    7. Denis Belomestny & Tobias Hübner & Volker Krätschmer, 2022. "Solving optimal stopping problems under model uncertainty via empirical dual optimisation," Finance and Stochastics, Springer, vol. 26(3), pages 461-503, July.
    8. Mark Anthony Caruana, 2017. "Estimation of Lévy Processes via Stochastic Programming and Kalman Filtering," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1211-1225, December.
    9. Kappus, Johanna, 2012. "Nonparametric adaptive estimation of linear functionals for low frequency observed Lévy processes," SFB 649 Discussion Papers 2012-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    11. Zhang, Zhimin & Yang, Hailiang, 2014. "Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 168-177.
    12. repec:hum:wpaper:sfb649dp2012-003 is not listed on IDEAS
    13. Söhl, Jakob & Trabs, Mathias, 2012. "A uniform central limit theorem and efficiency for deconvolution estimators," SFB 649 Discussion Papers 2012-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Johanna Kappus & Markus Reiß, 2010. "Estimation of the characteristics of a Lévy process observed at arbitrary frequency," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 314-328.
    15. Fallahgoul, Hasan & Franstianto, Vincentius & Lin, Xin, 2024. "Asset pricing with neural networks: Significance tests," Journal of Econometrics, Elsevier, vol. 238(1).
    16. Fabienne Comte & Céline Duval & Valentine Genon-Catalot, 2014. "Nonparametric density estimation in compound Poisson processes using convolution power estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(1), pages 163-183, January.
    17. Söhl, Jakob, 2010. "Polar sets for anisotropic Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 840-847, May.
    18. Kappus, Johanna, 2014. "Adaptive nonparametric estimation for Lévy processes observed at low frequency," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 730-758.
    19. repec:hum:wpaper:sfb649dp2011-027 is not listed on IDEAS
    20. Söhl, Jakob, 2009. "Polar sets of anisotropic Gaussian random fields," SFB 649 Discussion Papers 2009-058, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2012-003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.