IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i5p1517-1543.html
   My bibliography  Save this article

Weak convergence of the empirical truncated distribution function of the Lévy measure of an Itō semimartingale

Author

Listed:
  • Hoffmann, Michael
  • Vetter, Mathias

Abstract

Given an Itō semimartingale with a time-homogeneous jump part observed at high frequency, we prove weak convergence of a normalized truncated empirical distribution function of the Lévy measure to a Gaussian process. In contrast to competing procedures, our estimator works for processes with a non-vanishing diffusion component and under simple assumptions on the jump process.

Suggested Citation

  • Hoffmann, Michael & Vetter, Mathias, 2017. "Weak convergence of the empirical truncated distribution function of the Lévy measure of an Itō semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1517-1543.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:5:p:1517-1543
    DOI: 10.1016/j.spa.2016.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916301491
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Richard Nickl & Markus Reiß, 2012. "A Donsker Theorem for Lévy Measures," SFB 649 Discussion Papers SFB649DP2012-003, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Figueroa-López, José E., 2008. "Small-time moment asymptotics for Lévy processes," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3355-3365, December.
    4. Tim Bollerslev & Viktor Todorov, 2011. "Estimation of Jump Tails," Econometrica, Econometric Society, vol. 79(6), pages 1727-1783, November.
    5. Cecilia Mancini, 2009. "Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:5:p:1517-1543. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.