IDEAS home Printed from
   My bibliography  Save this paper

Learning Cycle Length through Finite Automata


  • Ron Peretz


We study the space-and-time automaton-complexity of the CYCLE-LENGTH problem. The input is a periodic stream of bits whose cycle length is bounded by a known number n. The output, a number between 1 and n, is the exact cycle length. We also study a related problem, CYCLE-DIVISOR. In the latter problem the output is a large number that divides the cycle length, that is, a number k >> 1 that divides the cycle length, or (in case the cycle length is small) the cycle length itself. The complexity is measured in terms of the SPACE, the logarithm of the number of states in an automaton that solves the problem, and the TIME required to reach a terminal state. We analyze the worst input against a deterministic (pure) automaton, and against a probabilistic (mixed) automaton. In the probabilistic case we require that the probability of computing a correct output is arbitrarily close to one. We establish the following results: o CYCLE-DIVISOR can be solved in deterministic SPACE o(n), and TIME O(n). o CYCLE-LENGTH cannot be solved in deterministic SPACE X TIME smaller than (n^2). o CYCLE-LENGTH can be solved in probabilistic SPACE o(n), and TIME O(n). o CYCLE-LENGTH can be solved in deterministic SPACE O(nL), and TIME O(n/L), for any positive L

Suggested Citation

  • Ron Peretz, 2010. "Learning Cycle Length through Finite Automata," Discussion Paper Series dp546, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  • Handle: RePEc:huj:dispap:dp546

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Abraham Neyman, 2008. "Learning Effectiveness and Memory Size," Discussion Paper Series dp476, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp546. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Simkin). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.