IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Learning Cycle Length through Finite Automata

Listed author(s):
  • Ron Peretz
Registered author(s):

    We study the space-and-time automaton-complexity of the CYCLE-LENGTH problem. The input is a periodic stream of bits whose cycle length is bounded by a known number n. The output, a number between 1 and n, is the exact cycle length. We also study a related problem, CYCLE-DIVISOR. In the latter problem the output is a large number that divides the cycle length, that is, a number k >> 1 that divides the cycle length, or (in case the cycle length is small) the cycle length itself. The complexity is measured in terms of the SPACE, the logarithm of the number of states in an automaton that solves the problem, and the TIME required to reach a terminal state. We analyze the worst input against a deterministic (pure) automaton, and against a probabilistic (mixed) automaton. In the probabilistic case we require that the probability of computing a correct output is arbitrarily close to one. We establish the following results: o CYCLE-DIVISOR can be solved in deterministic SPACE o(n), and TIME O(n). o CYCLE-LENGTH cannot be solved in deterministic SPACE X TIME smaller than (n^2). o CYCLE-LENGTH can be solved in probabilistic SPACE o(n), and TIME O(n). o CYCLE-LENGTH can be solved in deterministic SPACE O(nL), and TIME O(n/L), for any positive L

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem in its series Discussion Paper Series with number dp546.

    in new window

    Length: 8 pages
    Date of creation: Apr 2010
    Handle: RePEc:huj:dispap:dp546
    Contact details of provider: Postal:
    Feldman Building - Givat Ram - 91904 Jerusalem

    Phone: +972-2-6584135
    Fax: +972-2-6513681
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Abraham Neyman, 2008. "Learning Effectiveness and Memory Size," Discussion Paper Series dp476, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp546. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tomer Siedner)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.