IDEAS home Printed from https://ideas.repec.org/p/hst/ghsdps/gd12-268.html
   My bibliography  Save this paper

A Test for the Rank of the Volatility Process: The Random Perturbation Approach

Author

Listed:
  • Jean Jacod
  • Mark Podolskij

Abstract

In this paper we present a test for the maximal rank of the matrix-valued volatility process in the continuous Ito semimartingale framework. Our idea is based upon a random perturbation of the original high frequency observations of an Ito semimartingale, which opens the way for rank testing. We develop the complete limit theory for the test statistic and apply it to various null and alternative hypotheses. Finally, we demonstrate a homoscedasticity test for the rank process.

Suggested Citation

  • Jean Jacod & Mark Podolskij, 2012. "A Test for the Rank of the Volatility Process: The Random Perturbation Approach," Global COE Hi-Stat Discussion Paper Series gd12-268, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hst:ghsdps:gd12-268
    as

    Download full text from publisher

    File URL: http://gcoe.ier.hit-u.ac.jp/research/discussion/2008/pdf/gd12-268.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Mark Podolskij & Mathieu Rosenbaum, 2012. "Testing the local volatility assumption: a statistical approach," Annals of Finance, Springer, vol. 8(1), pages 31-48, February.
    2. Mathias Vetter, 2012. "Estimation of Correlation for Continuous Semimartingales," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 757-771, December.
    3. Robin, Jean-Marc & Smith, Richard J., 2000. "Tests Of Rank," Econometric Theory, Cambridge University Press, vol. 16(02), pages 151-175, April.
    4. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    5. Susanne Ditlevsen & Michael Sørensen, 2004. "Inference for Observations of Integrated Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 417-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nien-Lin Liu & Hoang-Long Ngo, 2014. "Approximation of eigenvalues of spot cross volatility matrix with a view toward principal component analysis," Papers 1409.2214, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hst:ghsdps:gd12-268. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tatsuji Makino). General contact details of provider: http://edirc.repec.org/data/iehitjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.