IDEAS home Printed from https://ideas.repec.org/p/aah/create/2012-57.html
   My bibliography  Save this paper

A test for the rank of the volatility process: the random perturbation approach

Author

Listed:
  • Jean Jacod

    (University Paris VI)

  • Mark Podolskij

    (Heidelberg University and CREATES)

Abstract

In this paper we present a test for the maximal rank of the matrix-valued volatility process in the continuous Itô semimartingale framework. Our idea is based upon a random perturbation of the original high frequency observations of an Itô semimartingale, which opens the way for rank testing. We develop the complete limit theory for the test statistic and apply it to various null and alternative hypotheses. Finally, we demonstrate a homoscedasticity test for the rank process.

Suggested Citation

  • Jean Jacod & Mark Podolskij, 2012. "A test for the rank of the volatility process: the random perturbation approach," CREATES Research Papers 2012-57, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2012-57
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/12/rp12_57.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    2. Yuri Kabanov & Robert Liptser, 2006. "From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift," Post-Print hal-00488295, HAL.
    3. Robin, Jean-Marc & Smith, Richard J., 2000. "Tests Of Rank," Econometric Theory, Cambridge University Press, vol. 16(2), pages 151-175, April.
    4. Arnaud Gloter, 2006. "Parameter Estimation for a Discretely Observed Integrated Diffusion Process," Post-Print hal-00404901, HAL.
    5. Arnaud Gloter, 2006. "Parameter Estimation for a Discretely Observed Integrated Diffusion Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 83-104, March.
    6. Mark Podolskij & Mathieu Rosenbaum, 2012. "Testing the local volatility assumption: a statistical approach," Annals of Finance, Springer, vol. 8(1), pages 31-48, February.
    7. Jean-Marc Robin & Richard Smith, 2000. "Tests of rank," Post-Print hal-03587662, HAL.
    8. Susanne Ditlevsen & Michael Sørensen, 2004. "Inference for Observations of Integrated Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 417-429, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nien-Lin Liu & Hoang-Long Ngo, 2014. "Approximation of eigenvalues of spot cross volatility matrix with a view toward principal component analysis," Papers 1409.2214, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean Jacod & Mark Podolskij, 2012. "A Test for the Rank of the Volatility Process: The Random Perturbation Approach," Global COE Hi-Stat Discussion Paper Series gd12-268, Institute of Economic Research, Hitotsubashi University.
    2. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    3. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    4. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    5. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    6. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    7. Song Yuping & Hou Weijie & Zhou Shengyi, 2019. "Variance reduction estimation for return models with jumps using gamma asymmetric kernels," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(5), pages 1-38, December.
    8. Comte, F. & Genon-Catalot, V. & Rozenholc, Y., 2009. "Nonparametric adaptive estimation for integrated diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 811-834, March.
    9. Nicolau, João, 2008. "Modeling financial time series through second-order stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2700-2704, November.
    10. Yunyan Wang & Lixin Zhang & Mingtian Tang, 2012. "Re-weighted functional estimation of second-order diffusion processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1129-1151, November.
    11. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    12. Orazio Attanasio & Sarah Cattan & Emla Fitzsimons & Costas Meghir & Marta Rubio-Codina, 2020. "Estimating the Production Function for Human Capital: Results from a Randomized Controlled Trial in Colombia," American Economic Review, American Economic Association, vol. 110(1), pages 48-85, January.
    13. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    14. Vetter, Mathias, 2010. "Limit theorems for bipower variation of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 22-38, January.
    15. George Kapetanios, 2003. "A New Nonparametric Test of Cointegration Rank," Working Papers 482, Queen Mary University of London, School of Economics and Finance.
    16. Guay, Alain, 2021. "Identification of structural vector autoregressions through higher unconditional moments," Journal of Econometrics, Elsevier, vol. 225(1), pages 27-46.
    17. Aureo de Paula & Xun Tang, 2020. "Testable Implications of Multiple Equilibria in Discrete Games with Correlated Types," Papers 2012.00787, arXiv.org.
    18. Dauphin, Anyck & El Lahga, Abdel-Rahmen & Fortin, Bernard & Lacroix, Guy, 2006. "Choix de consommation des ménages en présence de plusieurs décideurs," L'Actualité Economique, Société Canadienne de Science Economique, vol. 82(1), pages 87-118, mars-juin.
    19. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    20. Arnaud Dupuy & Alfred Galichon, 2014. "Personality Traits and the Marriage Market," Journal of Political Economy, University of Chicago Press, vol. 122(6), pages 1271-1319.

    More about this item

    Keywords

    central limit theorem; high frequency data; homoscedasticity testing; Itô semimartingales; rank estimation; stable convergence.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2012-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.