IDEAS home Printed from https://ideas.repec.org/p/hit/econdp/2014-08.html
   My bibliography  Save this paper

A Modified Confidence Set for the Structural Break Date in Linear Regression Models

Author

Listed:
  • Yamamoto, Yohei
  • 山本, 庸平

Abstract

Elliott and Müller (EM) (2007) provide a method for constructing a confidence set for the structural break date by inverting a variant of the locally best test statistic. Previous studies have shown that the EM method produces a set with an accurate coverage ratio even for a small break; however, the set is often overly lengthy. This study proposes a simple modification to rehabilitate their method through the long-run variance estimation. Following the literature, we provide an asymptotic justification for the improvement of the modified method over the original method under a nonlocal asymptotic framework. A Monte Carlo simulation shows that the modified method achieves a shorter confidence set than the EM method, especially when the break is large or the HAC correction is conducted. The modified method may exhibit minor errors in the coverage rate when the break is small; however, the coverage is more stable than alternative methods when the break is large. We apply our method to a level shift in post-1980s Japanese inflation data.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Yamamoto, Yohei & 山本, 庸平, 2014. "A Modified Confidence Set for the Structural Break Date in Linear Regression Models," Discussion Papers 2014-08, Graduate School of Economics, Hitotsubashi University.
  • Handle: RePEc:hit:econdp:2014-08
    as

    Download full text from publisher

    File URL: https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/26678/070econDP14-08.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elliott, Graham & Muller, Ulrich K., 2007. "Confidence sets for the date of a single break in linear time series regressions," Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.
    2. Pierre Perron & Yohei Yamamoto, 2016. "On the Usefulness or Lack Thereof of Optimality Criteria for Structural Change Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(5), pages 782-844, May.
    3. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    4. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    5. Yamamoto, Yohei & Tanaka, Shinya, 2015. "Testing for factor loading structural change under common breaks," Journal of Econometrics, Elsevier, vol. 189(1), pages 187-206.
    6. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    7. Eo, Yunjong & Morley, James C., 2008. "Likelihood-Based Confidence Sets for the Timing of Structural Breaks," MPRA Paper 10372, University Library of Munich, Germany.
    8. Seong Yeon Chang & Pierre Perron, 2018. "A comparison of alternative methods to construct confidence intervals for the estimate of a break date in linear regression models," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 577-601, July.
    9. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
    2. Eiji Kurozumi & Yohei Yamamoto, 2015. "Confidence sets for the break date based on optimal tests," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 412-435, October.
    3. Skrobotov, Anton, 2021. "Structural breaks in cointegration models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 117-141.
    4. KUROZUMI, Eiji & 黒住, 英司, 2017. "Confidence Sets for the Date of a Mean Shift at the End of a Sample," Discussion Papers 2017-06, Graduate School of Economics, Hitotsubashi University.
    5. Yunjong Eo & James Morley, 2015. "Likelihood‐ratio‐based confidence sets for the timing of structural breaks," Quantitative Economics, Econometric Society, vol. 6(2), pages 463-497, July.
    6. Eiji Kurozumi & Anton Skrobotov, 2018. "Confidence Sets for the Break Date in Cointegrating Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 514-535, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seong Yeon Chang & Pierre Perron, 2018. "A comparison of alternative methods to construct confidence intervals for the estimate of a break date in linear regression models," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 577-601, July.
    2. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    3. Casini, Alessandro & Perron, Pierre, 2021. "Continuous record Laplace-based inference about the break date in structural change models," Journal of Econometrics, Elsevier, vol. 224(1), pages 3-21.
    4. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    5. Eiji Kurozumi & Yohei Yamamoto, 2015. "Confidence sets for the break date based on optimal tests," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 412-435, October.
    6. Eiji Kurozumi & Anton Skrobotov, 2018. "Confidence Sets for the Break Date in Cointegrating Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 514-535, June.
    7. Alessandro Casini & Taosong Deng & Pierre Perron, 2021. "Theory of Low Frequency Contamination from Nonstationarity and Misspecification: Consequences for HAR Inference," Papers 2103.01604, arXiv.org, revised Sep 2024.
    8. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2017. "The asymptotic behaviour of the residual sum of squares in models with multiple break points," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 667-698, October.
    9. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    10. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    11. Hui Hong & Zhicun Bian & Chien-Chiang Lee, 2021. "COVID-19 and instability of stock market performance: evidence from the U.S," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    12. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    13. Elliott, Graham & Muller, Ulrich K., 2007. "Confidence sets for the date of a single break in linear time series regressions," Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.
    14. Casini, Alessandro & Perron, Pierre, 2022. "Generalized Laplace Inference In Multiple Change-Points Models," Econometric Theory, Cambridge University Press, vol. 38(1), pages 35-65, February.
    15. Jamel Jouini, 2009. "Analysis of structural break models based on the evolutionary spectrum: Monte Carlo study and application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(1), pages 91-110.
    16. Alessandro Casini, 2021. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," Papers 2103.02981, arXiv.org, revised Aug 2024.
    17. Alessandro Casini & Pierre Perron, 2018. "Continuous Record Asymptotics for Change-Points Models," Papers 1803.10881, arXiv.org, revised Nov 2021.
    18. Alessandro Casini & Pierre Perron, 2017. "Continuous Record Laplace-based Inference about the Break Date in Structural Change Models," Boston University - Department of Economics - Working Papers Series WP2018-011, Boston University - Department of Economics.
    19. Eo, Yunjong & Morley, James C., 2008. "Likelihood-Based Confidence Sets for the Timing of Structural Breaks," MPRA Paper 10372, University Library of Munich, Germany.
    20. Skrobotov, Anton, 2021. "Structural breaks in cointegration models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 117-141.

    More about this item

    Keywords

    coverage ratio; nonlocal asymptotics; heteroskedasticity and autocorrelation consistent covariance; condence set;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:econdp:2014-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Resources Section, Hitotsubashi University Library (email available below). General contact details of provider: https://edirc.repec.org/data/fehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.